

Applied Visualization in the
Neurosciences and the

Enhancement of Visualization
through Computer Graphics

Der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM
(Dr. rer. nat.)
im Fachgebiet

INFORMATIK

Vorgelegt

von Diplom-Informatiker Sebastian Eichelbaum

geboren am 3. Juli 1983 in Leipzig

Die Annahme der Dissertation wurde empfohlen von:

1. Juniorprofessor Dr. Mario Hlawitschka, Universität Leipzig
2. Professor Dr.-Ing. Bernhard Preim, Universität Magdeburg

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 27.11.2014 mit dem Gesamtprädikat summa cum laude.

i

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbstständig und ohne un-
zulässige fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die
angeführten Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die
wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Schrif-
ten entnommen wurden, und alle Angaben, die auf mündlichen Auskünften
beruhen, als solche kenntlich gemacht. Ebenfalls sind alle von anderen Per-
sonen bereitgestellten Materialen oder erbrachten Dienstleistungen als solche
gekennzeichnet.

Leipzig, 4. Dezember 2014..
(Ort, Datum)

..
(Unterschrift)

ii Selbstständigkeitserklärung

iii

Lebenslauf

Persönliche Daten

Name Sebastian Eichelbaum, Diplom Informatiker

Geburtsort Leipzig

Geburtsdatum 3. Juli 1983

Anschrift Gohliser Straße 20, 04105 Leipzig

E-Mail kontakt@sebastian-eichelbaum.de

Schulbildung

08/1990 – 06/2002 Friedrich Schiller Gymnasium Leipzig

06/2002 Abitur, Leistungskurse: Mathematik und Physik

Wehrdienst

07/2002 – 04/2003 Grundwehrdienst

04/2002 – 07/2003 Freiwilliger, zusätzlicher Wehrdienst

iv Lebenslauf

Akademischer Werdegang

10/2003 – 07/2009 Studium der Informatik, Universität Leipzig.
Schwerpunkt: Angewandte Informatik, Visualisie-
rung und Bildverarbeitung im Speziellen

07/2009 Abschluss als Diplom Informatiker an der Univer-
sität Leipzig

09/2009 – 12/2014 Wissenschaftlicher Mitarbeiter, Abteilung Bild-
und Signalverarbeitung, Universität Leipzig
Tätigkeiten:

• Betreuung studentischer Abschlussarbeiten

• Durchführung von Seminaren

• Projektleitung OpenWalnut

• Forschungsarbeit zu Themen der Visualisie-
rung in den Neurowissenschaften und der
Angewandten Computer Grafik

11/2014 Verteidigung der Dissertation, Universität Leipzig
Abschluss mit summa cum laude

Beruflicher Werdegang

01/2007 – 12/2008 Studentische Hilfskraft, Abteilung Bild- und
Signalverarbeitung, Universität Leipzig

03/2008 – 08/2008 Praktikum, BMW Werk Leipzig

11/2012 – heute Mitgründer und Gesellschafter der
�Nemtics GbR�

07/2014 – heute Gründung des Einzelunternehmens
�Sebastian Eichelbaum IT Dienstleistungen�

Leipzig, 4. Dezember 2014
..
(Ort, Datum)

..
(Unterschrift)

v

Danksagung

Ich möchte mich an dieser Stelle bei meinen beiden Betreuern Gerik Scheuer-
mann und Mario Hlawitschka bedanken. Beide haben mich während meiner
Promotion unterstützt und hatten immer ein offenes Ohr. Ich möchte mich für
die unzähligen Antworten auf meine unzähligen Fragen und die vielen Ideen
bedanken. Ein besonderer Dank gilt Mario und Alexander Wiebel dafür, dass
sie mich während meiner Zeit als studentische Hilfskraft mit spannenden Auf-
gaben für die Visualisierung begeistert haben.

Ein großer Dank geht auch an die Abteilungen Bild- und Signalverarbeitung
und Wissenschaftliche Visualisierung. Jeder hatte ein offenes Ohr für Fragen
und gemeinsam haben wir so manches Problem angehen können. Besonders
erwähnen möchte ich meine ehemaligen und aktuellen Bürokollegen Patrick
Oesterling, André Reichenbach und Stefan Philips. Vielen Dank für die vielen
spannenden Diskussionen und Zerstreuungsmomente.

Ein besonderer Dank geht auch an das OpenWalnut Team. Jeder hat aktiv
beigetragen und so konnten wir eine hervorragende Software entwickeln, die
längst über die Grenzen unserer Gruppe hinaus genutzt wird.

Ich möchte mich außerdem bei meinen Koautoren und Kollaborationspart-
nern bedanken. Wir haben viele Dinge ausprobiert. Nicht alles war ein Erfolg,
aber aus vielen Ideen und Experimenten sind gute wissenschaftliche Publikatio-
nen hervorgegangen. In alphabetischer Folge: Alfred Anwander, Dana Brooks,
Moritz Dannhauer, Bernd Hamann, Mario Hlawitschka, Jens Kasten, Thomas
Knösche, Stefan Philips, André Reichenbach, Gerik Scheuermann, Ralph Schu-
rade, Alexander Wiebel und natürlich alle anderen, die mit Ideen, Tipps, Codes
und Daten geholfen haben.

Neben allen meinen Kollegen gebührt der größte Dank natürlich meiner
Familie, meinen Freunden und meiner herzallerliebsten Bea. Ihr habt mich
stets unterstützt, habt mich aufgebaut wenn ich niedergeschlagen war, habt
mich motiviert, habt es verstanden wenn ich grummelig war. Danke!

vi Danksagung

vii

Zusammenfassung

In vielen Bereichen der Wissenschaft nimmt die Größe und Komplexität von
gemessenen und simulierten Daten zu. Die technische Entwicklung erlaubt das
Erfassen immer kleinerer Strukturen und komplexerer Sachverhalte. Um solche
Daten dem Menschen zugänglich zu machen, benötigt man effiziente und spe-
zialisierte Visualisierungswerkzeuge. Nur die Anpassung der Visualisierung auf
ein Anwendungsgebiet und dessen Anforderungen erlaubt maximale Effizienz
und Nutzen für den Anwender.

Teil I Im ersten Teil meiner Arbeit befasse ich mich mit der Visualisierung
im Bereich der Neurowissenschaften. Ihr Ziel ist es, das menschliche Gehirn
zu begreifen; von seinen kleinsten Teilen bis hin zu seiner Gesamtstruktur.
Um dieses ehrgeizige Ziel zu erreichen nutzt die Neurowissenschaft vor allem
kombinierte, dreidimensionale Daten aus vielzähligen Quellen, wie MRT, CT
oder funktionalem MRT. Um mit dieser Vielfalt umgehen zu können, benötigt
man in der Neurowissenschaft vor allem spezialisierte und evaluierte Visuali-
sierungsmethoden.

Zunächst stelle ich ein umfangreiches Softwareprojekt namens �OpenWal-
nut� vor. Es bildet die gemeinsame Basis für die Entwicklung und Nutzung
von Visualisierungstechniken mit unseren neurowissenschaftlichen Kollabora-
tionspartnern. Auf dieser Basis sind klassische und neu entwickelte Visualisie-
rungen auch für Neurowissenschaftler zugänglich. Anschließend stelle ich ein
spezialisiertes Visualisierungsverfahren vor, welches es ermöglicht, den kausa-
len Zusammenhang zwischen Gehirnarealen zu illustrieren. Das war vorher nur
durch abstrakte Graphenmodelle möglich. Den ersten Teil der Arbeit schließe
ich mit einer Evaluation verschiedener Standardmethoden unter dem Blickwin-
kel simulierter elektrischer Felder im Gehirn ab. Das Ziel dieser Evaluation war
es, der neurowissenschaftlichen Gemeinde die Vor- und Nachteile bestimmter
Techniken zu verdeutlichen und anhand klinisch relevanter Fälle zu erläutern.

viii Zusammenfassung

Teil II Neben der eigentlichen Datenvorverarbeitung, welche in der Visuali-
sierung eine enorme Rolle spielt, ist die grafische Darstellung essenziell für
das Verständnis der Strukturen und Bestandteile in den Daten. Die grafische
Repräsentation von Daten bildet die Schnittstelle zum Gehirn des Menschen.
Der zweite Teile meiner Arbeit befasst sich mit der Verbesserung der struk-
turellen und räumlichen Wahrnehmung in Visualisierungsverfahren – mit der
Verbesserung der Schnittstelle.

Leider werden viele visuelle Verbesserungen durch Computergrafikmetho-
den der Spieleindustrie mit Argwohn beäugt. Im zweiten Teil meiner Arbeit
werde ich zeigen, dass solche Methoden in der Visualisierung angewendet wer-
den können um den räumlichen Eindruck zu verbessern und Strukturen in den
Daten hervorzuheben. Dazu nutze ich ein in der Computergrafik bekanntes Pa-
radigma: das �Screen Space Rendering�. Dieses Paradigma hat den Vorteil,
dass es auf nahezu jede existierende Visualiserungsmethode als Nachbearbei-
tunsgschritt angewendet werden kann.

Zunächst führe ich zwei Methoden ein, die die Wahrnehmung von gitter-
artigen Strukturen auf beliebigen Oberflächen verbessern. Diese Gitter re-
präsentieren die Struktur von Tensoren zweiter Ordnung und wurden durch
eine Methode namens �TensorMesh� erzeugt. Anschließend zeige ich eine neu-
artige Technik für die optimale Schattierung von Linien und Punktdaten. Mit
dieser Technik ist es erstmals möglich sowohl lokale Details als auch globale
räumliche Zusammenhänge in dichten Linien- und Punktdaten zu erfassen.

ix

Summary

The complexity and size of measured and simulated data in many fields of
science is increasing constantly. The technical evolution allows for capturing
smaller features and more complex structures in the data. To make this data
accessible by the scientists, efficient and specialized visualization techniques
are required. Maximum efficiency and value for the user can only be achieved
by adapting visualization to the specific application area and the specific re-
quirements of the scientific field.

Part I In the first part of my work, I address the visualization in the neuro-
sciences. The neuroscience tries to understand the human brain; beginning at
its smallest parts, up to its global infrastructure. To achieve this ambitious
goal, the neuroscience uses a combination of three-dimensional data from a
myriad of sources, like MRI, CT, or functional MRI. To handle this diversity
of different data types and sources, the neuroscience need specialized and well
evaluated visualization techniques.

As a start, I will introduce an extensive software called “OpenWalnut”. It
forms the common base for developing and using visualization techniques with
our neuroscientific collaborators. Using OpenWalnut, standard and novel vi-
sualization approaches are available to the neuroscientific researchers too. Af-
terwards, I am introducing a very specialized method to illustrate the causal
relation of brain areas, which was, prior to that, only representable via abstract
graph models. I will finalize the first part of my work with an evaluation of
several standard visualization techniques in the context of simulated electrical
fields in the brain. The goal of this evaluation was clarify the advantages and
disadvantages of the used visualization techniques to the neuroscientific com-
munity. We exemplified these, using clinically relevant scenarios.

x Summary

Part II Besides the data preprocessing, which plays a tremendous role in vi-
sualization, the final graphical representation of the data is essential to un-
derstand structure and features in the data. The graphical representation of
data can be seen as the interface between the data and the human mind. The
second part of my work is focused on the improvement of structural and spatial
perception of visualization – the improvement of the interface.

Unfortunately, visual improvements using computer graphics methods of
the computer game industry is often seen sceptically. In the second part, I will
show that such methods can be applied to existing visualization techniques
to improve spatiality and to emphasize structural details in the data. I will
use a computer graphics paradigm called “screen space rendering”. Its advan-
tage, amongst others, is its seamless applicability to nearly every visualization
technique.

I will start with two methods that improve the perception of mesh-like
structures on arbitrary surfaces. Those mesh structures represent second-order
tensors and are generated by a method named “TensorMesh”. Afterwards I
show a novel approach to optimally shade line and point data renderings. With
this technique it is possible for the first time to emphasize local details and
global, spatial relations in dense line and point data.

Contents xi

Contents

1 Overview 1

2 Thesis Contributions 5

I Visualization in the Neurosciences 7

3 OpenWalnut 9

3.1 Overview . 10

3.2 Focus and Reasoning . 11

3.3 Realization . 13

3.4 Results . 19

3.5 Future Work and Conclusion 21

4 Effective Connectivity 23

4.1 Overview . 24

4.2 Background . 26

4.3 Method . 28

4.4 Results . 38

4.5 Future Work and Conclusion 43

5 Electric Fields from EEG and tDCS 45

5.1 Overview and Background 46

5.2 Visualization Algorithms 49

5.3 Application Cases . 55

5.4 Results and Discussion . 60

5.5 Future Work and Conclusion 82

xii Contents

II Computer Graphics in Visualization 87

6 Background 89
6.1 The Modern Graphics Processor 90
6.2 Screen Space Rendering 96
6.3 Summary and Outlook . 101

7 Improved TensorMesh 103
7.1 Overview . 104
7.2 Background . 109
7.3 Method . 118
7.4 Results . 129
7.5 Discussion . 135
7.6 Conclusion . 138

8 LineAO 141
8.1 Overview . 142
8.2 Background . 145
8.3 Method . 150
8.4 Results . 165
8.5 Discussion . 172
8.6 Conclusion . 176

9 PointAO 179
9.1 Overview . 180
9.2 Background . 182
9.3 Method . 184
9.4 Results . 185
9.5 Discussion . 190
9.6 Conclusion . 191

10 Thesis Conclusions 193

List of Publications 197

List of Talks 199

List of Figures 201

List of Tables 203

Bibliography 205

1

1
Overview

The complexity and size of data in many fields of science is increasing con-
stantly. The technological evolution allows for capturing smaller features and
more complex structures. To make this data accessible to the scientists, spe-
cialized visualization techniques are required, as efficiency and value for the
user can only be achieved by adapting visualization to the specific application
area and the specific requirements of the scientific field.

Part I In the first part of my work, I address the visualization in the neu-
rosciences. Neuroscience is an incredibly complex interdisciplinary science,
reaching from chemistry, over medicine to computer science and engineering.
The shared goal of all involved disciplines is the final understanding of the
brain’s function, beginning at its smallest parts, the neurons up to its global
infrastructure. To achieve this ambitious goal, the neuroscience uses a combi-
nation of data from a myriad of sources, like MRI, CT, functional MRI, EEG,
and microscopy to mention only some examples. To handle and analyze the
diversity of different data types and sources, the neuroscience needs special-
ized and well evaluated visualization techniques. The importance of proper
evaluation of visualization methods cannot be ranked high enough.

During my research work, me and my colleagues intensively collaborated
with neuroscientists, who were working in the areas of neuroimaging, cogni-

2 Chapter 1. Overview

tive neuroscience, and computational neuroscience. Unfortunately, modern
visualization is not actively used. Instead, colormaps on slices and statisti-
cal assessment are the de-facto standard for analysing complex simulations
and measured data, even though there is a huge interest in visualization. We
identified three major reasons for the restraint to use advanced visualization
techniques:

1. Most visualization methods are not evaluated and leave too much ques-
tions unanswered: Do they show the information needed? Are they
reproducible? How does the technique influence the data prior to dis-
playing it? How comparable are the results? Can it be embedded into
anatomical context?

2. A lot of visualization techniques are too complex and parameter-dependent.

3. Most published visualization methods are not accessible directly, in terms
of software and applicability to a given kind of data.

In this work, I will introduce our contributions to alleviate this set of prob-
lems. As a start, I will introduce an extensive software called “OpenWalnut”.
It forms the common base for developing and using visualization techniques
with our neuroscientific collaborators. Using OpenWalnut, standard and novel
visualization approaches are available to the neuroscientific researchers too.
Afterwards, I am introducing a very specialized method to illustrate the causal
relation of brain areas, which was, prior to that, only representable via abstract
graph models. I will finalize the first part of my work with an evaluation of
several standard visualization techniques in the context of simulated electrical
fields in the brain. The goal of this evaluation was to clarify the advantages
and disadvantages of the used visualization techniques to the neuroscientific
community. We exemplified these, using clinically relevant scenarios.

In part one, the necessary background information is given at the beginning
of each chapter, due to their dissimilarity.

Part II The visualization pipeline is usually depicted by three major steps: fil-
tering, mapping, and rendering. Besides the data processing steps, which play
a tremendous role in visualization, the final graphical representation (render-
ing) of the data is essential for understanding structures and features in the
data. The graphical representation of data can be seen as the interface be-
tween the data and the human mind. The second part of my work is focused

3

on the improvement of structural and spatial perception of visualization – the
improvement of the interface.

Unfortunately, visual improvements using computer graphics methods, orig-
inally invented of and for the computer game industry, is often seen sceptically.
In the second part, I will show that such methods can be applied to existing
visualization techniques with ease to improve spatiality and to emphasize struc-
tural details in the data. So, advanced computer graphics in visualization is
not only about beautiful pictures, but provides a tremendous benefit, when it
comes to understanding the shown data and structures.

The second part will start with an introduction to the modern graphics
pipeline and the screen space rendering paradigm, as this is the basis for the
shown methods. Its advantage, amongst others, is its seamless applicability
to nearly every visualization technique. The background chapter is directly
followed by the first two methods that improve the perception of mesh-like
structures on arbitrary surfaces. Those mesh structures represent second-order
tensors and are generated by a method named “TensorMesh”. Afterwards, I
show a novel approach to optimally shade line and point data renderings. With
this technique it is possible for the first time to emphasize local details and
global, spatial relations in dense line and point data.

Each method chapter will begin with an overview on the used input data,
how it is usually visualized, and why this can be improved. The chapters close
with a critical examination of the method’s weaknesses and how they can be
solved.

Note Chapters 3 to 5 and 7 to 9 are based on publications I made during my
doctoral research. Each publication, talk, and supplemental material is avail-
able online at http://www.sebastian-eichelbaum.de/publications.

http://www.sebastian-eichelbaum.de/publications

4 Chapter 1. Overview

5

2
Thesis Contributions

This chapter summarizes the contributions I achieved during my doctoral re-
search. It lists the novel techniques, improvements and achievements in order
of appearance.

Chapter 3 – OpenWalnut As conceptual program designer and programmer,
I contributed major parts of the OpenWalnut core library and graphical user
interface. I designed abstract, module-centric interfaces, making OpenWalnut
a flexible, adaptable, and useful visualization framework. Originally designed
as common base for neuroscientific visualization and research, it is now used
by many groups in different fields of science and applications (not only neuro-
science). Its open nature allows results to be reproduced and validated, which
is tremendously important in science.

Chapter 4 – Effective Connectivity Visualization I have introduced a novel
visualization for effective connectivity models. The method illustrates these
models and embeds them into the anatomical context, which was not possible
before. I have shown that the transfer of abstract DCM models to a meaning-
ful, anatomy-based visualization is feasible and that it helps to perceive these
abstract models from the anatomical perspective.

6 Chapter 2. Thesis Contributions

Chapter 5 – Evaluation of Standard Methods The major contribution in
Part I of my dissertation. I evaluated standard visualization techniques (iso-
surfaces, DVR, streamlines, LIC) in the context of simulated electrical fields
for their usability, advantages, and limitations. I implemented and applied
these methods on neuroscientific datasets, I got from one of my colleagues.
I have pointed out the possibilities of visualization and the very specific fea-
tures in his data. With the help of these visualizations, he was able to draw
interesting neuroscientific conclusions. Such an evaluation was done the first
time in the neuroscience community and we got a lot of feedback regarding
visualization and OpenWalnut.

Part I – Visualization for the Neurosciences With OpenWalnut and the vi-
sualization evaluation, I helped to make visualization more accessible to the
neuroscientists. I have shown that there are more possibilities than colormaps
and statistics to analyse data. I have demonstrated several standard tech-
niques in practice and made them available in a tool, the neuroscientists can
adapt easily to match the specific needs of a certain analysis task.

Chapter 7 – Improved Perception of Structure I have extended previous
work for improved perception of information on surfaces, represented as mesh-
like structure. The methods shown are relatively easy and can be adopted
in other visualization techniques that display information on surfaces easily.
I used the knowledge of this chapter in the evaluation (Chapter 5) and got
further positive feedback on the improvement of several surface-based LIC
renderings. This underlined the advantages of advanced computer graphics in
visualization.

Chapters 8 and 9 – Ambient Occlusion for Lines and Points These chapters
show my major contribution to the area of applied computer graphics in visu-
alization. I have developed a novel technique to enhance local structures and
global spatial relations in dense line and point data. Especially for line data,
this was not possible before and I showed that screen space postprocessing is a
valuable tool to improve existing rendering techniques. The proposed method
completely works in real-time and is not dependent on any precalculations. It
can be applied to arbitrary line and point based visualization techniques.

Visualization in the
Neurosciences

Visualization plays a central role in many areas of science, as it helps to grasp
the nature of measured and simulated data. Also neuroscience is very inter-
ested in visualization. It allows for an effective conveyance of complex data
and enables quick qualitative and quantitative assessments. Visualization
can unveil structures and properties inside the data that statistical measures
cannot.
However, not every visualization technique is equally adequate for different
analysis tasks and types of data. Additionally, the vast amount of avail-
able techniques makes it hard to decide for an optimal visualization ap-
proach. Rapidly evolving, new measurement techniques and simulation mod-
els demand for more and more specialized, application-specific visualizations.
Practicability studies on exiting visualization techniques are rare, causing a
huge uncertainty among neuroscientific researchers about the expressiveness
and validity of available methods; not to mention their availability in software
tools, if at all.
This part will present our work and contribution to the neurosciences. It
will introduce our open and free software framework, where we and other
visualization researchers implement methods to make them easily available
to neuroscientific users. We present a specific visualization technique to a
trending area of neuroscience, helping to understand the information flow in
the brain. Finally, we evaluate the usability of several standard visualization
techniques for the analysis of electrical fields in the human brain. Pa

rt
I

8 Chapter 2. Thesis Contributions

9

3
OpenWalnut – Open-Source
Visualization for Medical and

Neuroscientific Data

This chapter is based on the following publications:

[P1] – S. EICHELBAUM, M. GOLDAU, S. PHILIPS, A.
REICHENBACH, R. SCHURADE, and A. WIEBEL. Open-
Walnut: A New Tool for Multi-modal Visualization of
the Human Brain. EG VCBM 2010 Posters. 2010
Online: http://sebastian-eichelbaum.de/pub10d

[P2] – S. EICHELBAUM, M. HLAWITSCHKA, A. WIEBEL,
and G. SCHEUERMANN. OpenWalnut - An Open-
Source Visualization System. Proceedings of the 6th High-
End Visualization Workshop. Ed. by W. Benger, A. Gerndt, S.
Su, W. Schoor, M. Koppitz, W. Kapferer, et al. 2010, 67–78
Online: http://sebastian-eichelbaum.de/pub10e

[P3] – S. EICHELBAUM, M. HLAWITSCHKA, and G.
SCHEUERMANN. OpenWalnut: An Open-Source Tool
for Visualization of Medical and Bio-Signal Data.
Biomedical Engineering / Biomedizinische Technik. Ed. by
O. Dössel. 2013
Online: http://sebastian-eichelbaum.de/pub13c

http://sebastian-eichelbaum.de/pub10d
http://sebastian-eichelbaum.de/pub10e
http://sebastian-eichelbaum.de/pub13c

10 Chapter 3. OpenWalnut

3.1 Overview

In the course of ongoing research into neurological diseases and the func-
tion and anatomy of the brain, a large variety of examination techniques has
evolved. The different techniques aim at findings for different research ques-
tions or different viewpoints of a single task. The following are only a few of
the very common measurement modalities and parts of their application area:

• Computed Tomography (CT) – anatomical information, using X-ray mea-
surements;

• Magnetic Resonance Imaging (MRI) – anatomical information, using
magnetic resonance especially for soft tissues;

• Diffusion Weighted MRI (dwMRI) – directed anatomical information for
extraction of fiber approximations;

• Functional MRI (fMRI) – activity of brain areas indicated by the blood-
oxygen-level dependence (BOLD) effect; and

• Electroencephalography (EEG) – activation of certain brain areas, indi-
cated by electric fields.

Considering the different applications, it is evident that, for many research
areas, only a combination of these techniques can help answering the posed
questions. To be able to analyze data measured by the different techniques, a
tool that can efficiently visualize different modalities simultaneously is needed.
It has to provide algorithms to analyze their relations and differences.

As we started an intensive collaboration with neuroscientists at the Max
Planck institute for human cognitive and brain sciences, we required a common
basis for developing algorithms and implementing ideas. Our colleagues at the
Max Planck Institute already had a tool called “FiberNavigator” [54], which
turned out to be not flexible enough at this point. So we started developing
a new visualization framework, initially tailored towards the common require-
ments of visualization researchers and neuroscientists, using our visualization
tools.

The reasons why we did not use one of the many existing systems will
be the topic of the next section. The remaining chapter reveals some of the
architectural details and shows how we fulfil the posed requirements.

3.2. Focus and Reasoning 11

3.2 Focus and Reasoning

As mentioned above, it is very crucial to handle a multitude of different kinds
of images and signals. Besides this, there are several other criteria for visual-
ization software, especially in a scientific environment.

There are many visualization tools available, which have their specific
strengths and weaknesses, but none of them was able to completely fulfill our
criteria. In this section, we point out these criteria, building the fundamentals
of OpenWalnut’s software design and implementation.

At the same time, we use these criteria as a filter on a list of well known
and excellent visualization tools. In alphabetical order, these are: Amira [5],
MayaVi [122], MedINRIA [125], MeVisLab [129], ParaView [1], and the prob-
lem solving environment SCIRun [181].

Open-Source: In a scientific environment, it is very important to be able
to reproduce results of other researchers and to comprehend their algorithms
and methods. With the help of open-source software, this can be achieved. It
provides a possibility to share algorithms and calculation pipelines with oth-
ers in a common framework, without hiding necessary implementation details.
One could argue that it is sufficient to have the source code of the algorith-
m/method itself and that the underlying framework is not important. This is
only true, if the method is completely self-contained, which is not the case usu-
ally. Most published methods today reuse existing algorithms and calculation
methods, or even extend them.

Besides this, an open-source framework allows for easy extension and adap-
tion of existing methods to new problems or different data modalities.

Not fulfilling: Amira [5] and MeVisLab [129]. Both systems are closed
source software. MeVisLab offers open-source modules, but the framework
itself is closed.

General Purpose: Very focused software is not able to handle the above men-
tioned multitude of signal and image modalities. Additionally, in a research
environment, it is very often required to find new ways of solving a certain
medical or neurological problem. To achieve this, the used software must not
limit the researcher in terms of applicability of algorithms and in terms of easy
programmatic extensibility.

12 Chapter 3. OpenWalnut

Not fulfilling: MedINRIA [125]. It is a tool, focused on exploring and pro-
cessing medical images. It is tailored towards an image processing workflow,
and heavily relies on slice based image exploration.

Extensible: As we aimed at a software, which can be used for common re-
search in visualization and neurosciences, a fixed function tool suite has no
use for us. We required a software, which allows to add new algorithms and
whole processing pipelines with ease. Additionally, it is was required to reuse
existing tools. Re-inventing the wheel is a waste of time and our neuroscientific
collaborators already had complex processing pipelines written in Python and
MatLab, hence the coupling of external libraries and tools is a critical point.

As our list of tools contains only open-source tools at this point, they all
can be seen as being extensible. However, making the source code available
is insufficient. To use an existing framework and extending it with long-term
usability in mind, it is required to have plenty of documentation and an active
developer community. Further development of badly documented software,
with no support by the original developers, is cumbersome and not feasible in
practice.

A note on ParaView [1]: Although ParaView itself is extremely well doc-
umented and very extensible, the reliance on VTK [209] posed an obstacle
to us, as we planned to harness the processing power of the GPU. Especially
the modification of the rendering pipeline (i.e. for multi-pass rendering) and
the use of OpenCL was not explicitly included in the design of VTK in 2009.
VTK 5.6, released in September 2010, started to include multi-pass rendering
functionality with vtkRenderPassCollection; too late for us. However, fil-
tering ParaView because of this limitation does not come up to its extensibility.

Not fulfilling: MayaVi [122]. In 2009, MayaVi was practically dead. The
development of MayaVi 2, the Python and VTK based successor, was not
sufficiently advanced.

Usability – Graphical User Interface (GUI): Most software aims either at the
visualization researcher or the neuroscientist, with accordingly designed GUIs.
As we aimed at both groups – the neuroscientists, who needs a usable tool
to handle and visualize their data and the visualization researchers, who need
a powerful, programmable tool with a flexible user interface. Especially the
usability of the GUI was an important criterion, excluding a lot of pre-existing
tools.

3.3. Realization 13

Not fulfilling: ParaView [1] and SCIRun [181]. Both GUIs are very complex
and the learning curve is steep. Additionally, in ParaView, the processing
pipeline is pretty much kept behind the scenes. This is a disadvantage for
the visualization scientist. SCIRun’s strength certainly is its powerful data
processing capability. It provides visualization tools though, but they are not
that sophisticated.

Availability and Accessibility: The hurdle of using software which is not avail-
able on the user’s operating system, or which needs to be compiled tediously
for a system is very high. We required a portable software, which works on
different platforms and is available as binary package. Nowadays, this criterion
is fulfilled by most software tools and libraries.

Amongst the pure source and binary distribution, we also consider docu-
mentation, support, and clean code to belong to accessible software. Thereby,
we not only refer to documentation and support for users, but also for devel-
opers. Unfortunately, a lot of open-source visualization tools fall short at this
particular point. Not seldom, open-source releases contain mostly prototypic,
badly designed code and lag basic developer and user documentation.

Summary: Surely, there are a lot of visualization tools available we not men-
tioned explicitly. And surely, a lot of them fulfill the above requirements and
would have been a perfect tool for our purpose. Unfortunately, we were not
aware of them – or they simply did not comply with our requirements in code
quality and documentation.

This was the reason for starting the OpenWalnut project in 2009. We set
the above criteria as our objective and started promoting OpenWalnut in the
neuroscience community – the positive and negative feedback we got and still
get, is the basis to develop a solid and community-driven visualization tool.

3.3 Realization

In the previous section, we defined the objectives for the development of Open-
Walnut. During the realization of OpenWalnut, I designed and implemented
the OpenWalnut core library and the abstract concepts in it. These concepts
are the topic of this section. Additionally, I took the role of the “Benevolent
dictator for life (BDFL)” [86], a very well known concept in the open-source

14 Chapter 3. OpenWalnut

community. I am responsible for the positive advance of the project and I
retain the final word in case of irresolvable discussions.

This section provides an overview on the architecture of OpenWalnut and
how it complies to the above criteria.

3.3.1 Architecture Overview

OpenWalnut’s design was mainly steered by the above criteria, but the need
to build a software, used by researchers of two different fields of science, with
different requirements, and different expectations, influenced development in
two additional ways:

1. OpenWalnut has to be a powerful and easily expandable framework for
visualization researchers, allowing them to implement algorithm proto-
types and ideas quickly and easily while,

2. providing an intuitive graphical user interface for neuroscientist researchers,
who include OpenWalnut in their daily research tasks.

Whereas the first point asks for a flexible and extendible framework, the second
introduced the need for a high level of interactivity and responsiveness of the
application.

To achieve these ambitious goals, it is important to split functionality and
interface. Known and famous in the context of object-oriented programming,
this principle (refer to the excellent work of Gamma et al. [60]) allows a pow-
erful and complex framework under the hood of a simple interface, the GUI in
our case.

Core Library OpenWalnut is completely centered around the module-principle.
Everything in OpenWalnut is a separate module: each algorithm, each dataset,
each visualization method. So, instead of implementing a fixed amount of al-
gorithms into a library, we decided to implement the common utility code,
required to write algorithms, visualizations, and datasets. We call this the
“OpenWalnut Core Library (OCL)”. The OCL contains math functionality,
general data handling, a graphics engine, and the module interface. The
graphics engine is as an extension to the OpenSceneGraph library [144], imple-
menting several simplifications and wrappers on top of it. Worth mentioning
is our sophisticated multi-pass rendering code, allowing for easy and efficient
implementation of custom GPU rendering pipelines.

3.3. Realization 15

Modules Instead of mentioning all the details about utility codes in the OCL,
we go on with the module concept in OpenWalnut. The OCL provides the so-
called “module container”. It implements the concept of the data flow graph.
This is a very common concept in visualization and other data processing tools.
For details on different visualization pipeline approaches, we refer to the work
of Moreland [133]. In the context of visualization, the data flow concept defines
data sources (sources), algorithms (filters), and visualizations (sinks) as nodes
in a graph. Edges between the nodes represent the transport of data between
them. We use a similar notion to the ones used in [133], and, according to this
survey, we use distributed execution control with pipeline parallelism.

In OpenWalnut, the nodes are called “modules” and the module container
accommodates them and their connections (edges). The module container pro-
vides a programming interface to add modules, remove modules, list modules,
list connections, and connect outputs with inputs. The user interface (UI) can
utilize this to depict the state of the module graph and to modify it, according
to the user and script input. In OpenWalnut, the UI can be a graphical user
interface (GUI), a command-line interface, or a script interface.

Additionally, an important characteristic of modules in OpenWalnut is that
modules have a local view only and run in their own thread. They do not
know anything about the module graph, other modules, or to whom they are
connected. This avoids side-effects in the visualization pipeline. The fact that
modules run in their own thread yields a high level of parallel execution in
complex networks. The survey [133] calls this “pipeline parallelism”.

Modules: Connectors A module has exactly one possibility to interact with
other modules residing in the container. Modules can define so called connec-
tors. These connectors represent the input and output channels of a module
and define the exact type of data this connector supports. This ensures that
modules always get the right kind of data at the correct input. A change in
an input causes the module to be notified. When a module changes its own
outputs, the changes automatically propagate along the graph and wake up
directly depending modules, allowing them to process the new data. There is
no central execution control. When an update on an input occurs, the module
wakes up and handles it. In [133], this is called distributed execution control.

The whole architecture is designed to use the push mechanism to propagate
data, states, and other information. The OCL makes heavy use of this and
provides callback and signaling mechanisms for nearly all possible operations.

16 Chapter 3. OpenWalnut

This ensures that the module container and OCL does not need to be polled
somehow by the UI or by the modules.

Modules: Properties The remaining task is the communication of module
parameters and other settings to the user/script.

During the design process, we always avoided that modules have to know
the UI or need to specify their UI representation directly. Therefore, modules
are equipped with a mechanism called properties.

These properties enable the module developer to simply define parameters
or settings without any knowledge of their representation. A module can, for
example, define a property of type double with a name and a description as-
sociated with it. In addition, the developer can define constraints, for example
that it only accepts positive values. The interesting part here is, that it is
up to the specific UI to decide about the (graphical) representation of those
parameters. To stick with the double-property example, the UI can decide
whether a slider or a text box is more appropriate for a property. It mainly
uses the constraints defined on a property to find a proper representation.

Whenever the user modifies a property in the UI or script, the property
automatically checks, whether the new value is valid, by using the before-
mentioned property constraints. If the value is invalid, the property rejects
it and the UI can somehow show it to the user. If the value is valid, it is
set for the property and the automatic change-propagation ensures that all
observers, especially the module owning the property, are notified about the
value change. A module can then wake up from its sleep state to handle the
new value. As the properties implement the observable pattern [60], they can
be used in a variety of ways in OpenWalnut.

Modules: Containers are Modules With an increasing amount of fine-grained
algorithm implementations in modules, the complexity of the needed UI inter-
action increases tremendously. This is especially true, if results of algorithms
need to be reused as input for other modules quite often.

To circumvent the problem, OpenWalnut allows using module containers as
modules. As mentioned above, these containers accommodate multiple mod-
ules and their connections. A container can then forward outputs and inputs
from modules inside to the outside world. This allows a module container
to look and behave like a normal module. The module programmer can re-
combine modules in a certain way to map a work-flow or visualization use
case, without revealing the underlying complexity. This, on the one hand,

3.3. Realization 17

hides complexity from the user and makes the software more intuitive. On the
other hand, it allows programmers to reuse existing modules and algorithm
networks with ease in their own modules.

UI and GUI The UI represents the front-end to the core library and its data
flow graph. The abstract definition of modules, their inputs and outputs, as
well as their abstract property description allows the UI to create a clean
and structured interface automatically. This way, the UI looks the same for
all modules and directly reflects the flow graph and the OCL concept. This
being said, one can see Figure 3.1 as a schematic view on the OpenWalnut
core: a container populated with modules, the settings of the modules, and
the graphics engine output.

Before we used the flow graph to represent the processing pipeline, we have
used a linear list of data and applied modules on them. This style of pipeline
representation is fairly standard in many medical image processing tools, hence
our neuroscientist colleagues requested this scheme too, as they were used to it
already. Initially designed to hide the complexity of the flow graph, it turned
out to be more confusing than simplifying. So, we changed this to a direct
flow graph representation, which is far more intuitive. It directly represents
the flow of data along a processing pipeline.

Architecture Summary To summarize the above paragraphs, one can say that
the core of OpenWalnut is the OCL – a library, providing an interface to a data
flow graph. The modules and their connectors are used to populate the module
container in the OCL, building the data flow graph. Parameters and settings
of modules are defined using the abstract properties interface, allowing the
module developer to describe the required value, without providing a specific
implementation. The pipeline parallelism and the intensive use of callback
mechanism ensures responsiveness of the UI/GUI at all times and the abstract
module interfaces allow for a straight-lined and structured user interface.

Using the OCL, we implemented a graphical user interface and a Python
script interface as UI. We also deliver a lot of modules to provide the user
and other developers with a set of sophisticated visualization and processing
techniques. The OCL, the two UIs, and the extensive set of modules builds
up the package, we call OpenWalnut.

18 Chapter 3. OpenWalnut

Figure
3.1:

T
he

G
U

I
ofO

penW
alnut.

O
n

the
top-rightofthe

window,the
data

flow
graph

is
shown.

Itdirectly
reflects

the
m

odules
and

their
connections.

T
he

lower-right
part

shows
the

m
odule

properties
ofthe

currently
selected

m
odule

(“Fiber
D

isplay”
in

this
case).

T
he

properties
can

be
grouped

by
the

m
odule

developer
and

an
additionaltab

provides
help

on
the

m
odule.

T
he

rem
aining

part
of

the
window

is
used

for
rendering

the
scene.

A
dditionally,

alloperations
that

apply
to

a
certain

sub-window,
are

placed
at

the
top

of
that

sub-window,
instead

of
a

globaltool-bar.

3.4. Results 19

3.4 Results

Now, that the notions and the basic concepts in OpenWalnut are known, we
focus on how OpenWalnut blends into the before-mentioned criteria and what
we have achieved so far.

Open-Source, Availability and Accessibility OpenWalnut is licenced under
the terms of the lesser GNU general public license 3, LGPLv3 for short. The
source is distributed at our website. This makes OpenWalnut open-source.

The complete source is written in portable C++, using only portable ex-
ternal libraries, like Qt4 for the GUI and OpenSceneGraph for the graphics
output. The advantage is that all required libraries are available on Linux,
Windows and Mac OS, making OpenWalnut available on all major platforms.
We deliver a binary distribution in the NeuroDebian repository [69], providing
even easier access to the neuroscience community.

Last but not least, we provide extensive documentation and support for
developers and users. We deliver online documentation, extensive program-
ming tutorials, proper code documentation, a beginners tutorial, open issue
tracking, and mail support. This way, we are lowering the first hurdle for
users and developers tremendously. Our undergraduate students work and de-
velop with OpenWalnut in less than a week, without help, just by using the
provided documentation. The high quality of our code, ensured by strict code
guidelines, and the high quality documentation guarantee the accessibility to
OpenWalnut and visualization.

The documentation, the sources and binary distributions are available on-
line at http://www.openwalnut.org.

General Purpose and Extensible OpenWalnut uses the data flow principle.
It is extremely flexible and does not fix the user to a certain image processing
pipeline. It provides a maximum of flexibility for neuroscientists, by allowing
them to combine data and algorithms in nearly any way.

Moreover, the easy-to-use programming interface allows developers to pro-
vide new modules without any hassle. It is easy to utilize the strengths of
external libraries, or to completely develop new methods from scratch. Open-
Walnut does not entail any unnecessary limitations to modules.

Usability – Graphical User Interface (GUI) OpenWalnut focuses on a clean
and straight interface, which is centered around the data-flow network, as

http://www.openwalnut.org

20 Chapter 3. OpenWalnut

shown in Figure 3.1. The GUI does not clutter the interface with additional
setting-windows, several tool-bars, or awkwardly placed buttons and GUI ele-
ments. As the GUI is created automatically, we can ensure a consistent look
and feel at all times. This lowers the entry curve tremendously and ensures
that an user can get used to the software very fast.

Besides this, OpenWalnut tries to avoid global tool-bars and menus. All
operations are placed at the sub-window to which they relate. For example,
the “Load”-button to load a flow graph from a project file is not placed at a
global tool-bar. It is placed at the top area of the flow graph window, because it
modifies the flow graph. The “Screenshot”-button is at the top of the rendering
window, because it saves the contents of the rendering window to disk. This
is consistently done for all operations.

We avoid complex and complicated GUI dialogs for algorithms, provide
useful default values for all parameters, direct visual feedback for parameter
changes, and allow to combine complex data pipelines into containers, to hide
their complexity. This and the structured GUI ensures a high level of usability
for visualization researchers and the scientific user of OpenWalnut.

Besides the GUI, we provide a Python script UI. We are working with
developers from SCIRun to integrate OpenWalnut with SCIRun via Python.
This allows for a more direct coupling of visualization with a data processing
pipeline.

3.4.1 Limitations

OpenWalnut is not perfect. It falls short for all the cases where one needs a
criterion fulfilled, which contradicts one of the above. For example, if a very
specific GUI is needed, our GUI implementation is of no use. Fortunately, the
OpenWalnut core library makes it easy to develop new user interfaces from
scratch.

Focus on Regular Grid Data Also noteworthy is the fact that OpenWalnut
completely focuses on data, organized in regular grids. Other types of grids and
completely new dataset types can be added easily in a collection of modules,
since the OCL does not limit the developer in what he transfers through module
connectors. This means, the OpenWalnut code does not need to be touched
to implement new types of data or grids.

3.5. Future Work and Conclusion 21

Synchronization As the data flow graph uses a decentralized execution con-
trol (cf. Moreland [133]), it can get problematic to synchronize parallel and
repeated execution of algorithms. Consider the following scenario: there is a
scalar field generator. It outputs the field to a spatial derivation module and
to a module showing an isosurface. The spatial derivation module outputs a
gradient vector field to the isosurface module, but takes some time to com-
pute. The isosurface module uses the gradients as normals for lighting. So, the
isosurface module depends on two inputs, whose data might arrive at different
points in time. This is a synchronization problem in the data flow graph, which
is not yet solved in OpenWalnut. I already started thinking about barriers in
the data flow graph for synchronization. The barrier-concept is widely used in
parallel programming and might solve our synchronization problem too.

Mac OS X Support Another, yet pressing issue is our Mac OS X support.
Although OpenWalnut compiles and works on this operating system, it can be
cumbersome sometimes. We rely on a lot of external libraries (Boost, Qt, and
OpenSceneGraph). If, due to a change made by Apple, one of these libraries
does not work anymore, OpenWalnut does not work or compile anymore. This
happens to be the case for the OpenSceneGraph library quite a lot recently.
Especially the combination of OpenSceneGraph with the GUI programming
system Qt is problematic on Mac OS X.

3.5 Future Work and Conclusion

3.5.1 Future Work

OpenWalnut is far from being done. We know the weaknesses and we are
working on them. We permanently refine the system to reach even more users
and researchers. The user documentation will be extended to contain video
tutorials. The module-specific help has to be written for a lot of modules, and
we tackle the limitations mentioned in the Section 3.4.1. In other words, there
are a lot of things to do and we are facing this challenge.

3.5.2 Conclusion

In the last sections, I introduced OpenWalnut, how it works in principle, and
how it complies to our posed criteria. Of course, it is hard to scientifically
substantiate the above arguments. This is why we explicitly point out that

22 Chapter 3. OpenWalnut

there are many tools available for handling and visualizing medical images and
bio-signal data. Each tool has its advantages and disadvantages. We do not
try to re-invent the wheel, nor do we claim our project is superior to the others.
We created a tool, which complies to a certain set of criteria and tries to reuse
as many as possible of existing tools and frameworks. The extensive doc-
umentation, the flexible, but easy-to-use programming interfaces,
as well as our long term planning makes OpenWalnut attractive to many
researchers and developers in the medical and neuroscientific fields. We
provide them with an open and powerful tool to explore their data – or to
create new ways of visualizing them. It is the tool we use at our department
to develop high quality visualizations and to share our ideas with our
collaborators and the scientific community.

The increasing number of users from different groups all around the
world and the positive feedback we get, fortifies the claim that OpenWalnut is a
solid visualization tool with a mentionable benefit for the scientific community,
not only in the neurosciences.

23

4
Visualizing Effective Connectivity

of the Brain

This chapter is based on the following publication:

[P4] – S. EICHELBAUM, A. WIEBEL, M. HLAWITSCHKA,
A. ANWANDER, T. KNÖSCHE, and G. SCHEUERMANN.
Visualization of Effective Connectivity of the Brain.
Proceedings of the 15th International Workshop on Vision,
Modeling and Visualization (VMV) Workshop 2010. Ed. by
R. Koch, A. Kolb, and C. Rezk-Salama. 2010, 155–162
Online: http://sebastian-eichelbaum.de/pub10c

http://sebastian-eichelbaum.de/pub10c

24 Chapter 4. Effective Connectivity

4.1 Overview

The Data: Connectivity Models Diffusion-weighted magnetic resonance imag-
ing (DW-MRI) has become a window to the anatomical structures of the hu-
man brain and allows in-vivo reconstruction of fiber tracts that form neural
networks. Although the size of single nerve fibers is far below the resolution
capabilities of today’s imaging devices, neuroscientists use tracked fiber clus-
ters intensively to understand the human brain’s structure, in particular its
connectome, i.e., the wiring scheme of the brain — the structure.

On the other hand, electroencephalography (EEG), magnetoencephalogra-
phy (MEG) and functional MRI (fMRI) allow scientists to measure functional
coherences between the activation in different brain areas in response to ex-
ternal stimuli — the function.

A major goal in neuroscience is the understanding of structure-function re-
lationships. To combine both, the anatomical knowledge and the experimental
results in models, representing the influences of structural connections in an
experimental context, many approaches have been developed. One of these
models is Dynamic Causal Modeling (DCM). DCM was introduced by Friston
et al. [58] and can be seen as a generalization of structural equation modelling
(SEM) by McIntosh and Gonzalez-Lima [124]. For more details on DCM and
its relation to SEM, please refer to Penny et al. [150]. The basic idea is to find
a reasonable model that represents interacting cortical regions. DCM aims at
making estimations about the causal architecture of coupled brain regions and,
even more interesting, how this coupling is influenced by experimentally in-
duced stimuli. In 2009, Stephan et al. [195] introduced an approach to include
tractography-based, anatomical knowledge into DCM and have provided the
first formal evidence that anatomical knowledge can improve DCM.

To summarize, DCM allows to describe effective connectivity as the combi-
nation of anatomical structure and functional causality, including intensity of
information transfer between cortical regions. As a result, effective connectiv-
ity can be calculated between two cortical regions and is a measure for their
causal relation. For each pair of anatomically connected regions, two effec-
tive connectivity values exist, one in each direction along the same anatomical
path. This means that effective connectivity is a directed value, describing the
information transfer from A to B and from B to A on the same anatomical
path connecting A and B.

4.1. Overview 25

Visualization of Connectivity Visualization of medical data is a wide-spread
field and many approaches have been developed to visualize almost all imaging
and measurement modalities separately or in conjunction with each other. In
the context of our work, methods regarding several kinds of connectivity are
of special interest. Fiber tractography has been introduced to provide a global
view on locally acquired data [9]. To interactively explore the white matter
pathways, it has proven advantageous to precalculate a large number of fiber
tracts in advance and selectively filter them, by using regularly shaped regions
of interest, as done by Akers et al. [2] and Blaas et al. [17]. Another approach is
to create large-scale structural brain networks, describing anatomical connec-
tion between several cortical regions of the brain [68]. These networks can be
visualized by graphs and even by embedding them into the three-dimensional
context of the brain, where they can be explored interactively. One well known
exploration tool is the ConnectomeViewer [61]. For further details with regard
to visualization and a comprehensive overview on this topic, please refer to
chapter 15 of Visual Computing for Medicine, Second Edition: Theory, Algo-
rithms, and Applications by Preim and Botha [153].

Functional connectivity is another challenge. The literature on useful visu-
alizations for this kind of connectivity is relatively sparse. The vast amount of
data requires statistical methods to find significant relations, which can be un-
derstood best, by providing an underlying anatomical context and interactive
tools to selectively view the information provided. An example for exploring
functional relationships is the BrainMiner tool as shown by Mueller et al. [135]
and Welsh et al. [219].

Visualization of effective connectivity has not yet been investigated in de-
tail. Usually, effective connectivity is shown as an abstract graph, without any
anatomical meaning. Each node in the graph represents a certain area of the
brain and is connected to other nodes with directed, weighted edges, denoting
the effective connectivity.

The Problem Two-dimensional graph layouts do not allow the inclusion of
anatomically guided geometric relationships and are, therefore, not able to
show the structure-function relationship properly. Additionally, the visualiza-
tion of two values in opposing directions on the same anatomical connection
is a serious problem for common visualization methods. Prior to our method,
there was no way to reconstruct the anatomical embedding of a DCM model
and to visualize it.

26 Chapter 4. Effective Connectivity

(a) Abstract model (b) Our anatomical visualization

Figure 4.1: Our goal is to convert the abstract graph model in (a) to the anatom-
ically meaningful visualization in (b). (b) provides insight into the underlying
anatomical structures, helping to understand the formerly abstract model.

Our Solution We present a method to circumvent the above problems. We
combine anatomical and effective connectivity to embed the DCM model into
its underlying anatomical context. The anatomical pathways, transporting the
information between each pair of connected regions, are extracted and used to
project the effective connectivity. We are using an animation technique for
relative visualization of effective connectivity on anatomical structures.

We transfer the previously abstract model to an anatomically fortified vi-
sualization, as shown in Figure 4.1.

4.2 Background

As mentioned above, DCM aims at making estimations about the causal cor-
relation of coupled brain regions and, even more interesting, how this coupling
is influenced by experimentally induced stimuli.

DCM uses ordinary differential equations, whose parameters correspond
to directed effective connectivity. This allows the construction of reasonable
models of cortical regions, interacting with each other. These models are
supplemented with a forward model, which describes how the neuronal activity
of each node maps to the fMRI-measured responses. This way, the best-fitting
model and its parameters (the effective connectivity) can be identified.

4.2. Background 27

To further understand how DCM models the change of neural states, as-
sume that each region in the brain is a state variable in the neuronal state
vector x. Then, the change of x in time can be modeled using the equation:

dx

dt
= Ax+

m∑
j=1

ujB
(j)x+ Cu. (4.1)

Here, the variable u models the exogenous inputs, i.e., inputs from outside the
system. The matrix A represents the coupling of nodes without any input.
Basically, A is a connection matrix of nodes. The matrices B(j) describe the
change induced by the j-th input uj to the fixed coupling in matrix A (e.g.,
learning, attention, etc.). The matrix C describes the influence of direct input
due to, e.g., stimuli.

This model of neural dynamics is used, in combination with a biophysically
motivated model (the hemodynamic model), as a forward model to actually
estimate the resulting Blood Oxygen Level Dependency (BOLD) signal. The
estimated BOLD signal can be compared with fMRI measurements and the
best fitting model is selected for each time step. The change of the state vector
x over time describes the effective connectivity. Friston et al. [58] describes
how the connectivity parameters in the matrices A,B,C can be calculated
using an entirely Bayesian approach.

As the details and mathematics in the background would go beyond the
scope of this thesis, we refer the reader to the excellent work of Friston et al.
[57] and Stephan et al. [196].

To summarize the whole process for clarification, one can say that the
causal influences of several cortex regions are modeled by using the neural
state equation (4.1). It describes changes of the neural state vector according
to external stimuli. These neural states are translated to an estimated BOLD
signal and compared with measured fMRI BOLD signals. The change over
time describes the effective connectivity. These models can be expressed as
graphs, as Figure 4.2 illustrates. It shows the fusiform gyrus (FG) and lingual
gyrus (LG) on the left and right hemispheres. The blue lines represent the
anatomical connectivity and the black arrows denote the effective connection.
The grayed-out parts depict the external stimuli that have been applied to this
particular model. The actual effective connectivity values were taken from the
original work of Stephan et al. [194].

28 Chapter 4. Effective Connectivity

Figure 4.2: Example effective connectivity graph. Shown are the involved regions,
fusiform gyrus (FG) left and right (FGl and FGr) as well as lingual gyrus (LG) left
and right (LGl and LGr). The regions are connected anatomically (blue) and, as
modelled in the DCM model, by effective connections (black arrows). The connection
modulation (gray dotted lines) has been modeled by task and stimulus properties.
Several stimuli have been applied as individual events to the lingual gyrus in the left
visual field (LVF), right visual field (RVF) and both visual fields (BVF). For more
details, see [194].

Anatomy in DCM In 2009, Stephan et al. [195] extended this approach to in-
clude tractography-based anatomical knowledge into DCM. They showed that
anatomical knowledge can improve DCM tremendously. Without diving too
much into the details, the modification is a Gaussian-shrinkage prior, defined
as a monotonic function and depending on anatomical connectivity. As a re-
sult, the models best matching the real fMRI BOLD signal were those models
that caused an increase in effective connectivity with increasing anatomical
connection.

With this in mind, the need for a combined visualization providing both,
the effective connectivity as well as the anatomical connectivity foundation is
obvious.

4.3 Method

Now, as the basic concepts of effective and anatomical connectivity have been
described, we will continue with how we visualize this kind of data in an
anatomical context. We start by extracting the anatomy behind the input
DCM model. This is done by selecting the fibers between all connected regions

4.3. Method 29

of the model. We go on, building a volumetric representation of the fibers.
Finally, we use the volume to render a surface and animate the flow of “data-
packages” along it.

Notations In the following sections, the effective connectivity graph is han-
dled as a weighted directed graph: (V,A, e). Each node r ∈ V is anatomically
represented by a region of the brain and each arc c ∈ A correlates with a clus-
ter of fiber tracts, corresponding to the anatomical connection. The weight-
ing function e(i, j) provides the directed effective connectivity value for each
connected pair of regions ri and rj. Another convention, we will use in the
following sections, is to treat each fiber tract as an ordered sequence of points:
f = {x|x ∈ R3} in the set of all fiber tracts f ∈ F . In a real-world dataset,
this ordering is defined by the set of line segments f segments = {(a, b)|a, b ∈ f}.
This set also defines two designated elements:

fx0 ∈ f with ¬∃w ∈ f : (w, fx0) ∈ f segments and (4.2)

fx|f |−1 ∈ f with ¬∃y ∈ f : (fx|f |−1 , y) ∈ f segments, (4.3)

denoting the first and the last vertex of the fiber tract, if the order in f is
assumed to be the order of appearance of each vertex along the tract. Prac-
tically spoken, this is the usual way of storing line data as an ordered list of
coordinates.

4.3.1 Fiber Tract Selection

As the graph in Figure 4.2 implies, the anatomical connection is always de-
fined between two distinct areas of the brain. These regions need to be known
beforehand and can be extracted in several ways. In our example, the fusiform
gyrus (FG) and lingual gyrus (LG) have been segmented manually. An alter-
native to manually segmenting the required regions is the use of atlas-based
methods (i.e. Rohlfing et al. [160]).

With the help of the segmented regions, the selection of all fiber tracts,
belonging to the anatomical connections in A, can be done by checking whether
a fiber f ∈ F connects the regions ri and rj with ri, rj ∈ V and, therefore,
by classifying them to belong to a cluster C(ri,rj). To actually perform this
selection, Blaas et al. [17] presented a fast selection method for regular masks,
boxes in their case. As our classification needs to be done with irregular masks

30 Chapter 4. Effective Connectivity

and needs to be computed only once, such optimization strategies are not worth
the additional computational effort.

We classify each fiber tract, by simply testing each fiber tract’s vertices
x ∈ f ∈ F against both target regions ri and rj, while loading the preintegrated
fiber tract dataset from file. To avoid testing all vertices against all voxels of
all regions, we apply a bounding box test for each vertex against the region
bounding boxes to early discard vertices. The remaining vertices get tested
against the exact voxel representation of the regions. This yields the list of
vertices belonging to one of the regions ri or rj. Using the ordering of all
vertices of a fiber in f and the classification of vertices to regions, we can easily
reconstruct the fibers going from a region ri to a region rj. When starting at
the first vertex in the region ri and stopping at the last vertex of region rj,
we effectively cut the fibers to the right length. In practice, this is done by
iterating along each fiber. As this fiber selection is straight forward, we omit
further details here. The only thing to keep in mind is the sampling theorem.
It is important to ensure that the distance between two vertices is more than
two times lower than the size of a voxel in the region mask data.

Figure 4.3(a) shows a part of the forceps occipitalis selected by the left and
right lingual gyrus, supplemented with the corresponding masks.

4.3.2 Fiber Tract Volumetric Representation

Depending on the location of the selection regions r ∈ V in the brain, the
amount and density of the fibers may vary. This becomes problematic for
surface-based animation. The animation might not even be perceptible if the
fiber tract cluster is too thin or too sparse. To avoid this problem, we create
a volume representing the cluster of fibers. The volume can then be postpro-
cessed to close holes or for thickening the cluster’s volumetric representation.
An alternative is the approach by Enders et al. [49], which calculates a wrap-
ping surface around the fiber tracts. However, it may create surfaces not
wrapping the whole cluster, especially if it contains strongly diverging fiber
tracts.

Voxelization of three-dimensional lines and line segments is covered in many
publications. We are using a three-dimensional variant of the Bresenham al-
gorithm [22] for line rasterization with anti-aliasing. This is similar to the idea
in Wu’s line algorithm [227]. As both algorithms are sufficiently well known,
we do not go into details here.

4.3. Method 31

(a) Selected fibers (b) Volume representation

(c) Smoothed volume (d) Parameterization of the volume

Figure 4.3: The selected part of the forceps occipitalis between the left and right
lingual gyrus (LG). (a) The fibers are filtered by the regions. (b) The volume repre-
sentation of the selected fibers. (c) Applying the Gaussian filter once yields a smooth
surface, maintaining the anatomical structure. (d) A parameterization along a des-
ignated parameterization fiber is used to characterize the main direction of the fiber
tract cluster at each point in the volume.

32 Chapter 4. Effective Connectivity

(a) Centerline as in Enders et al. [49] (b) Longest fiber tract

Figure 4.4: The fiber tracts between the right fusiform gyrus (FG) and the right
lingual gyrus (LG). (a) The centerline is too short to properly parameterize the
volume along the main direction of the bundle. (b) The longest line solves the problem
but it is not necessarily in the center of the bundle.

Volumizing all fiber tracts f ∈ C(ri,rj) for all (ri, rj) ∈ A yields several three-
dimensional, discrete fields. They describe the anatomical path of information
transfer for each pair of connected regions ri and rj:

v(ri,rj)(x, y, z) ∈ [0, 1]. (4.4)

The resolution is defined by the length of the smallest segment in the fiber
tract data.

Figure 4.3(b) shows the resulting volume as an isosurface. The surface is
very rough and, therefore, does not look natural. Applying a single, discrete
Gaussian filter iteration to the volumized fiber tracts v(ri,rj) smooths the sur-
face, while keeping the anatomical structure of the fiber tract cluster. The
isovalue used in both examples is 0.3, as both datasets are in the interval of
[0, 1].

Until now, there is no information about the direction, nor the tangential
information of the underlying fiber tract cluster available during rendering. A
second volume containing a parameterization of the fiber tract cluster itself is
needed. We first tried using the centerline approach by Enders et al. [49], which
averages equidistantly sampled tracts to build the centerline. Correspondingly,
a relatively large amount of short tracts cause the centerline to also degenerate
to a short line. It does not cover the whole cluster in length, thus making it
suboptimal for parameterization. The fiber tracts between the right fusiform
gyrus and the right lingual gyrus are an example for this, as Figure 4.4(a)
shows. The longest fiber tract in the cluster, called fparam, is selected for
parameterization instead. Even though the longest line might not be in the

4.3. Method 33

center of the cluster, nor represents it the main direction of the cluster, it is
very well suited for parameterization.

To finally parameterize the volumized fiber tract cluster, an additional
parameterizefparam(x, y, z) function is used, which calculates the parameter
for a given point in relation to the parameterization fiber tract fparam. The
parameterization field p is then, similar to v(ri,rj)(x, y, z), defined voxelwise:

p(ri,rj)(x, y, z) = parameterizefparam(v(ri,rj)(x, y, z)). (4.5)

The parameterize function is defined the following:

parameterizefparam(x, y, z) = |fparamx0 , ..., xnearest|︸ ︷︷ ︸
length of fparam if cut at xnearest

. (4.6)

The fiber tract vertex xnearest ∈ fparam is the nearest vertex of the param-
eterization fiber tract to the voxel (x, y, z). So, the distance traveled along
the parameterization fiber tract up to the voxel’s nearest vertex xnearest pa-
rameterizes the cluster – a longitudinal parameter. The parameterization field
needs to be scaled from the interval [0, |fparam|] to the interval [0, 1]. This nor-
malization allows uncomplicated upload to the GPU via textures. We denote
the normalized field as pscaled(ri,rj). Figure 4.3(d) shows the parameterization of the
masked part of the forceps occipitalis using color coding.

As the volumized fiber tract field v(ri,rj)(x, y, z) was smoothed earlier, the
parameterization field p(ri,rj)(x, y, z) needs to be calculated only for those vox-
els, with a non-zero value and can be done during the Gaussian filter itera-
tion. This ensures a continuous parameterization for all voxels involved in the
anatomical path.

4.3.3 Effective Connectivity Animation

At this point, we already have the anatomical representation of the input
model. This section now describes, how we represent the effective connectivity
value as moving beams on the volumized tracts. As effective connectivity
is a directed information, we use two beams on a tract volume to represent
both “information-packages”. These packages are moving from one region to
the other in a real-time animation to support the metaphor of information-
package transfer along a physical wire. Their length represents the effective
connectivity value; the amount of data in the information-package.

34 Chapter 4. Effective Connectivity

(a) With overlapping (b) No overlapping

Figure 4.5: The final rendering of the fiber tract cluster from left to right lingual
gyrus. The effective connectivities along the shown connection are represented by
bars. We call them beams. These beams get animated to move along the anatomical
connection. This corresponds to the metaphor of moving information packages along
a wire. (a) This image was made at a time step, where the beams of LG left→LG
right and LG left←LG right do overlap to show how we combine both beams. (b)
This image shows the beams without overlapping at another time step.

After the fiber tracts have been selected and volumized, a smooth surface
can be rendered. Typically, the marching cubes algorithm [113] is used for
triangulation of volume data. Although our animation approach works on tri-
angulated surfaces too, we are using a GPU-based ray tracing [50, 94, 95, 211]
for isosurface extraction and rendering. With this approach, we circumvent
any possible triangulation-related problems and achieve a topological correct
surface, which renders even the thinnest fiber tract branches correctly. As this
kind of volume rendering is well known, we omit the details here. Figure 4.3(b)
shows the GPU ray-traced isosurface with gradient based per pixel lighting.
Another, rather important note here is that we will use the term fragment in
this section. This represents the pixel on screen, for a point on the surface. As
we use ray-casting in object space, we always have a three-dimensional, object
space coordinate associated with it. This allows easy access to the parameter-
ization field pscaled(ri,rj)(x, y, z). For further information on the GPU notations and
coordinate spaces, we refer the reader to Chapter 6.

As the parameterization field was uploaded to the GPU too, we apply
effective connectivity animation on the GPU for every fragment on the surface,
by classifying each surface pixel to belong to either the highlighted pixels,
highlight-border pixels, or to the non-highlighted part of the surface. Those

4.3. Method 35

highlighted beams, representing the “information-packages”, move from ri to
rj and vice versa. The different sizes represent the effective connectivity value.

To ease the following descriptions, we will describe only one moving package
in the direction ri to rj, along the corresponding anatomical connection in
v(ri,rj)(x, y, z). In the next paragraphs, we call those “packages” only “beams”,
as they look similar to moving beams on the surface. Due to the graphics
hardware architecture, a fragment has its local view only. Neighboring pixels
are not accessible for write or for read. This is, why we need to calculate
the current midpoint m of the “information-package” for each fragment in
dependency of time t:

m = ((t+ o) · v) mod (k + k

3)− k

6 (4.7)

The Equation (4.7) is very simple and uses two parameters. The current time t
with an offset o in milliseconds and the velocity v. It is the well known physical
relationship between distance, time, and velocity. The offset parameter is used
to avoid that the beam ri → rj starts at the same moment as the beam ri ← rj.
This creates a better impression, as it does not look as artificial as if they would
have been started at the same time, both meeting exactly in the middle of the
cluster volume. The modulo operation ensures that there is a periodic beam-
movement from ri to rj, along the current voxel’s gradient in parameterization
space in k units along the fiber tract cluster. In our implementation we are
using k = 100, which creates a smooth movement. To ensure that the beam
does not abruptly end when the middle of the beam reaches the end of the
cluster and to ensure that the beam does not pop up on the other side with
the beam’s middle at the beginning of the cluster, the interval is stretched. In
other words, this means that m also covers the invisible part of the parameter
space, large enough to contain half of a beam’s maximum size, in this case k

6

on each end of the parameter space. For more details on the size of the beams,
see Section 4.3.3.

The value of m represents the current position of the beam. On the surface
of the tract cluster, this can be seen as a iso-line in the parameterization field on
this surface. It is perpendicular to the main direction (the current gradient)
on the surface. This line moves, depending on time and speed, along the

36 Chapter 4. Effective Connectivity

surface. It is used for classifying the current fragments value in p(ri,rj)(x, y, z)
(cf. Equation (4.8)), whether it belongs to the current beam:

b(ri,rj)(x, y, z) = |m− k · s(ri,rj)p
scaled
(ri,rj)(x, y, z)| −

l(ri,rj)

2 . (4.8)

The Equation (4.8) describes an environment of size l(ri,rj) (the length of the
beam from ri to rj), around the current beam-center m. The parameter s is
used to ensure equal speeds and the correct size-relation between the beams
for all beams on all fiber tract clusters and is the relation between the fiber
used for parameterization of the cluster (ri, rj) and one of the parameterization
fibers of all the clusters in A:

s(ri,rj) =
|fparam(ri,rj) |
|fparamref |

, (ri, rj) ∈ A, ref ∈ A. (4.9)

The reference fiber tract is arbitrary.
Finally, b can be used as a predicate for each fragment at the current

coordinate, whether it is

• inside the beam: b < −ε,

• on the border of the beam: b ∈ [−ε, 0], or

• outside of it: b > ε.

The variable ε denotes the border width. Ignoring s, this simply tests, whether
the actual fragment along the main direction of the fiber tract cluster is near
the current position m.

The final pixel color can now be determined using an arbitrary colormap.
In our implementation, we use the following mapping, where c(ri,rj) is the color
for the beam from ri to rj and c(rj ,ri) represents the beam color from rj to ri
respectively:

cfragment =

c(ri,rj) if b(ri,rj) < −ε
c(rj ,ri) if b(rj ,ri) < −ε
c(ri,rj) if b(ri,rj) < −ε∧

b(rj ,ri) < −ε∧
l(ri,rj) ≤ l(rj ,ri)

c(rj ,ri) if b(ri,rj) < −ε∧
b(rj ,ri) < −ε∧
l(ri,rj) > l(rj ,ri)

white if b(rj ,ri) ∈ [−ε, 0]
csurface else.

(4.10)

4.3. Method 37

The surface itself has an user defined color csurface, which is set, if the fragment
does not belong to either one of the beams. Equation (4.10) also covers the
case, where the beams overlap. If this is the case, the color of the smaller
beam is used. Blending both colors would irritate the user too much. The
white border around each beam ensures that the beam is visible even if the
contrast between the beam’s color c(ri,rj) or c(rj ,ri) and the surface color is very
low. Figure 4.5 shows two time steps of the animation, one with overlapping
beams.

Determining the length of the beams

The effective connectivity, represented by the specific beam, is used to de-
fine its length. To have the length and, especially, their relation between
each other consistent, we map the interval [0, 1], representing the smallest and
largest beam to the interval of the involved effective connectivities. We use the
connectivity graph’s weighting function e and find its minimum and maximum:

[min{e(i, j)|(ri, rj) ∈ A},max{e(i, j)|(ri, rj) ∈ A}] (4.11)

The mapping function l(rj ,ri) has to map between [0, 1] and the interval of
the smallest to the largest connectivity value. This mapping can be adapted
to the possible cases. In our examples, the effective connectivities did not
differ too much. We used a linear mapping. If the effective connectivities vary
very strongly, a logarithmic scale can help to avoid many very small beams
of not distinguishable size and very few large beams. It is worth mentioning
that the beam length interval [0, 1] itself needs to be mapped to the actual
beam sizes. This mapping is strongly dependent to the parameter k of the
above Equations (4.7) and (4.8). A good choice is to set the beam sizes to
[k
100 ,

k
3], which creates beams not too small and avoids extremely large beams

covering the whole surface. In the end, this defines our l(rj ,ri) to be the mapping
of min{e(i, j)|(ri, rj) ∈ A} (smallest effective connectivity value) to k

100 and
max{e(i, j)|(ri, rj) ∈ A} (largest effective connectivity value) to k

3 accordingly.

4.3.4 Labeling

Due to the scaling and the movement of the beams on the surface, it is diffi-
cult to read the actual effective connectivity value. Only relationships can be
seen. Therefore, our approach is supplemented with some labeling features,

38 Chapter 4. Effective Connectivity

allowing the user to see the real effective connectivity value and the names of
the involved regions. Figures 4.6 and 4.7 show the example fiber cluster with
the corresponding labels.

To avoid that the labels overlap the actual surface and animation, we have
implemented a boundary labeling approach. We place the labels, containing
the region names, at the left and right side of the scene. The horizontal leader
lines point to the beginning of each fiber tract cluster, defined by the first
vertex of the longest line. This labeling approach is very simplistic, but works
well for a few labels, as in our case. There are much more sophisticated tech-
niques available. Oeltze-Jafra and Preim [142] present a survey on labeling
approaches, focusing on medical visualization applications. In a more com-
plex effective connectivity scenario with a lot of involved regions, we strongly
recommend to use more advanced technique to avoid unnecessary overlap of
labels.

4.3.5 Summary

In the last sections, we introduced the three major steps needed to visualize
effective connectivity models anatomically. We have searched the fiber tracts
belonging to the arcs in the model’s graph, by using anatomical region masks
for each node r in the graph. This created an anatomical representation of
the model. We voxelized, parameterized, and rendered the previously selected
tracts. During rendering, we use the programmable GPU pipeline to classify
each pixel on the surface, whether it belongs to a beam or not. Using an
animation scheme, we were able to animate the information-transfer between
brain regions on the basis of their anatomical connection.

4.4 Results

In this section, we demonstrate our method for two different types of datasets:
a real dataset (cf. Figures 4.6 and 4.7) obtained by DCM with tractography-
based priors and an artificial dataset (cf. Figure 4.8). The artificial data is
also derived from real anatomy, but the shown connections and connectivities
are made up for increased complexity.

4.4. Results 39

Figure 4.6: The final rendering of the T1 context and the effective connectivity
graph from Figure 4.2. The involved regions are labeled and the fiber tract clusters
are colored differently. To properly understand the image, the animation is required.
The animation provides the direction and, therefore, the source and target of an
“information-package”.

40 Chapter 4. Effective Connectivity

(a) Focusing LG left - LG right

(b) Focusing LG left - FG right

Figure 4.7: The user can selectively explore the effective connectivity graph, by
highlighting the needed parts of the graph. Transparency also helps to explore occluded
parts of other fiber tract volumes, or to unveil interpenetrated tracts.

4.4. Results 41

4.4.1 Data

DCM Data

The data was taken from Stephan et al. [194] and [195]. It examined the
connection of a region in one hemisphere and the connectivity to their rela-
tively close counterpart in the other hemisphere (see Figure 4.2). The fiber
tractography was acquired using a DTI measurement with 60 directions ac-
quired with a three Tesla scanner at the Max Planck Institute for Human
Cognitive and Brain Sciences. The DTI image is given as second-order tensor
data; 93 × 116 × 93 voxels with a resolution of 1.72mm. The tracts we use,
were computed using the method of Weinstein et al. [217]. The complete set of
tracts consists of 74,313 tracts, represented by 5,472,306 vertices. The fusiform
gyrus (FG) and the lingual gyrus (LG), left and right, were segmented in a
MRI T1 image, measured using the same three Tesla scanner as used for the
DTI data. The image, warped into standard space, has a resolution of 1mm
for 160× 200× 160 voxels.

The selection of the fiber tracts connecting the regions yielded only three of
the links shown in Figure 4.2. The link between FG left and FG right is missing.
This results from the low probability of this connection, together with the
parameter setting of our deterministic tracking. Neuroscientists, who perform
studies about effective connectivity, however, are able to fit their probabilistic
tracking to a deterministic fiber tract dataset properly. Thus, the missing link
is not a fault of our method.

Figure 4.7 shows the effective connectivity data in anatomical context. We
provide labels for each region and color different tract volumes differently. Our
implementation in OpenWalnut (cf. Chapter 3) allows blending out each part
of the rendering separately. Working with transparency and de-saturation
allows clutter reduction and context preservation at the same time. Figure 4.6
shows this with examples.

Artificial Data

For the artificial example, we took the same tract and T1 anatomy data as
above, but selected arbitrary regions. The connectivity for the tract connection
between these regions was chosen randomly. This approach allowed us to
produce complex, yet expressive connections that help to illustrate our method.

42 Chapter 4. Effective Connectivity

(a) (b)

Figure 4.8: Artificial test data for illustration: (a) shows the LG left – LG right
fiber tract and the tract resulting from using the LG right – FG right regions without
cropping the fibers. (b) shows the tracts from (a) and a part of the corticospinal
tract, as well as the forceps minor in front of the brain.

Fiber tract cluster FPS

Whole connectivity graph (Figure 4.6) 12

Whole connectivity graph, no context (Figure 4.7) 22

Artificial data with context (Figure 4.8(a)) 18

Artificial data with context (Figure 4.8(b)) 14

Table 4.1: Performance of the rendering in frames per second (FPS).

Figure 4.8 shows two examples of artificial data. Even though, these exam-
ples are not necessarily realistic, they prove that our method is not only appli-
cable to some special physical connections and effective connectivity graphs.

4.4.2 Performance

The computational effort of the method can be divided into two separate parts:
preprocessing (fiber selection and volumization) and rendering. The prepro-
cessing step runs in the order of seconds for all the datasets presented in this
paper and will not be much larger for any data of reasonable size. Thus, the
effort is in the same range as loading the data and is consequently negligible.

The rendering step is entirely performed on the graphics hardware. This
leads to very efficient computation, yielding interactive frame rates. Table 4.1
lists some frame rate measurements and the corresponding figure. For mea-
suring these frame rates, we have used a computer with two AMD Quad-Core

4.5. Future Work and Conclusion 43

Opteron processors, 32 GB of RAM and NVidia GeForce 8800 GTX graph-
ics hardware. The GPU can be seen as low-end consumer graphics hardware
nowadays (2014). As shown in Table 4.1, we provide a visualization with high
frame rates, so the neuroscientists can interactively explore their data.

4.4.3 Limitations

The presented method was a first experiment, whether it is possible to trans-
fer effective connectivity models to an anatomically-based visualization with
reasonable effort. As such, there are a lot of options to improve the method.
Here, we mention two of them.

Regions Our approach strongly relies on segmented data for each of the re-
gions involved into the effective connectivity graph. These segmented regions
significantly influence the results of the fiber tract selection process. To cope
with this issue, a reasonable next step is to analyse the use of probabilistic
tractography and atlas based region masks. Especially probabilistic tractog-
raphy creates volumetric representations already, allowing our method to skip
the fiber tract selection and volume representation steps.

Animation The metaphor of moving information-packages is not well suited
for transporting quantitative information on the actual effective connectiv-
ity values. It only represents relative quantities and directional information.
However, our method to extract the anatomical representation of the effective
connectivity data can still be used as a basis for other, quantitative visualiza-
tions to depict the actual values.

4.5 Future Work and Conclusion

4.5.1 Future Work

As mentioned above, there are several limitations in our proposed method.
Next steps include the exploration of probabilistic tractography for creating
the fiber tract volumes and the use of standard information visualization tech-
niques to depict effective connectivity values in the anatomical visualization.
Possible would be the use of arrows, whose size or density changes with the
effective connectivity value; colormaps; hatching; changing the diameter of the
fiber tract volume according to the connectivity – and much more. Holten and

44 Chapter 4. Effective Connectivity

Wijk [82] provides a user study on possible ways to visualize directed edges of
graphs.

Even more important than proposing a lot of alternative visualizations is to
evaluate them. How do they perform in the daily routine of the neuroscientists
and how well do they transport the desired information?

Another important improvement is the application of ambient occlusion
techniques for improved spatial perception. Especially Figure 4.6 shows the
need for more spatial relations being visible in the rendering. Part II of my
work will focus on this kind of computer graphics to improve the visualization
results tremendously.

4.5.2 Conclusion

We presented an interactive, animated visualization for illustrating effective
connectivity in the human brain. The method is not mature. There is a lot
of potential to optimize the method on a technical level, as well as on the
visualization level.

Nevertheless, it provides an intuitive and understandable visualiza-
tion of the involved anatomical structures and the corresponding effective con-
nectivities, using the metaphor of “information-packages”. This helps
neuroscientists to see and understand the information transfer between the
involved regions in the context of their underlying anatomical context.

In complex DCM graphs and networks, the animation can get confusing
as many anatomical paths show information-transfer and, therefore, create
visual clutter. We lessen the effect of visual clutter by allowing the user to
selectively view parts of the graph and fading out animation on others,
thus retaining the other anatomical structures. The incorporation of focus
and context principles and interactive selection of parts of the data makes it
even more useful for daily use and exploration of data.

45

5
Visualizing Simulated Electrical

Fields from EEG and tDCS: A
Comparative Evaluation.

This chapter is based on the following publications:

[P5] – S. EICHELBAUM, M. DANNHAUER, M. HLA-
WITSCHKA, D. BROOKS, T. R. KNÖSCHE, and G.
SCHEUERMANN. Visualizing Simulated Electrical Fields
from Electroencephalography and Transcranial Electric
Brain Stimulation: A Comparative Evaluation. Neu-
roImage 101 (2014), 513–530. ISSN: 1053-8119
Online: http://sebastian-eichelbaum.de/pub14a

[P6] – S. EICHELBAUM, M. DANNHAUER, G. SCHEUER-
MANN, D. BROOKS, T. R. KNÖSCHE, and M. HLA-
WITSCHKA. A Comparative Evaluation of Electri-
cal Field Visualization from EEG/tDCS. The 20th An-
nual Meeting of the Organization for Human Brain Mapping
(HBM), Poster 3029. 2014
Online: http://sebastian-eichelbaum.de/pub14b

http://sebastian-eichelbaum.de/pub14a
http://sebastian-eichelbaum.de/pub14b

46 Chapter 5. Electric Fields from EEG and tDCS

5.1 Overview and Background

In this chapter, we show the value of several, common visualization methods
using three well chosen and neuroscientifically relevant examples where electri-
cal fields play a significant role. We are convinced that visualization can help
to gain deeper insights into volume conduction phenomena. Those phenomena
are often only statistically describable, and, at best, investigated by standard
visualization techniques. We want to contribute to approach an answer to the
question: “What aspects of visualization are helpful regarding electrical fields
in neuroscientific research?”.

Structure This chapter is structured in sections as following.

1. We introduce noninvasive neuroscientific techniques (electroencephalo-
graphy (EEG) and transcranial direct current stimulation (tDCS)) that
are relevant in this work and discuss visualization in this context. In
the current work, tDCS was chosen exemplarily as a representative of a
family of electric brain stimulation techniques, like transcranial alternat-
ing current stimulation (tACS), transcranial random noise stimulation
(tRNS), transcranial electrical stimulation (TES) [147, 163] that employ
scalp surface electrodes to inject electric currents.

2. We identify three generic criteria to evaluate visualization techniques
in neuroscience, introduce common visualization techniques and explain
their basic working principles.

3. We describe three clinically relevant examples to evaluate visualization
methods.

4. We present visualization results and discuss the findings for each clinical
example. We especially evaluate the mentioned three criteria for each
visualization method.

5. We conclude our work and summarize general advantages and disadvan-
tages of standard visualization techniques.

5.1.1 Electroencephalography (EEG)

Noninvasive mapping of neuronal activity is important for a better understand-
ing of human brain function. In clinical practice, for example, the mapping is
essential for the diagnosis of neurodegenerative diseases and the identification

5.1. Overview and Background 47

of epileptogenic brain tissue [166]. Electroencephalography (EEG) is a nonin-
vasive technique that is directly sensitive to the electrical activity of neuronal
populations and, therefore, well suited to observe normal and pathological
brain function in humans. Recording electrodes are placed on the head sur-
face and pick up potential differences caused by Ohmic return currents, which
are driven by electromotive forces in and around active neuronal areas. Elec-
tric flow fields mediate between those neural sources and the measured EEG.
These fields are embedded in a very complicated volume conductor, the human
head, which features many different structures of varying electrical properties
(conductivities). Both, the prediction of measurements from known sources
(forward problem) and the estimation of the source locations from measure-
ments (source reconstruction) involve modeling these fields. The accuracy and
precision of these estimations depend on the accuracy of the head modeling,
which, in the most general case, requires a voxelwise description of inhomo-
geneous and anisotropic conductivity values as well as a reasonable sampling
of the tissue boundaries. For more information concerning head modeling and
source reconstruction, refer to the literature [220].

In order to gain insights into the complicated relationship between neu-
ral activity and measured EEG, visualization of electrical fields is of great
value. It allows assessing, at one glance, which features of the head cause
a large influence and, therefore, need to be modeled in greater detail. Vi-
sualization can also help to assess the effect of certain modeling errors and
simplifications. Moreover, it can show, in a very demonstrative fashion, how
pathological anomalies, such as holes in the skull, influence the way EEG re-
flects brain activity. One important prerequisite for field visualization is that
the electrical field is explicitly computed within the three-dimensional head
volume, using, for example, the finite element or the finite difference method.
We refer the reader to the literature in this complex topic [16, 23, 35, 59, 70,
120, 166, 172, 225].

5.1.2 Transcranial direct current stimulation (tDCS)

Transcranial direct current stimulation (tDCS) is a noninvasive technique to
modulate neural brain activity (e.g., [114, 126, 137, 207]) by injecting low
amplitude direct currents through surface electrodes. tDCS has been known
for over a century, but has recently been rediscovered as a promising tool
to support a wide range of clinical applications [20, 26, 56, 100, 138, 175].
Moreover, it has been successfully applied in basic and cognitive neuroscience

48 Chapter 5. Electric Fields from EEG and tDCS

research (e.g., [91, 224]). In this technique, frequently, large rectangular patch
electrodes are used (normally 25 − 35 cm2, e.g., Nitsche et al. [140]) in ex-
perimental settings and placed according to accepted EEG standards (e.g.,
10 − 20). In some rare cases also smaller electrodes are employed in exper-
iments [29, 47]. To study the impact of modeling tDCS for experimental
settings, electrical current density is one of the main parameters to determine
physiological effects for brain and other head tissues. Visualization of tDCS
simulations, like current density plots by Wagner et al. [210], can be helpful for
assessing those effects as well as for understanding the way particular brain ar-
eas are stimulated depending on electrode montage and design, head geometry
(e.g., skull thickness), and other factors.

5.1.3 Visualization of electrical fields

In general, when considering head modeling in EEG/MEG/tDCS analysis, the
significance of certain modeling issues or particular features in the biological
tissues (e.g., holes in the skull) are mostly assessed by visualizing and quanti-
fying their final consequences, such as changes in surface potentials or mislo-
calization of dipolar sources (e.g., Dannhauer et al. [35]). These consequences
are, however, mediated by the electric flow field in the head. Hence, visualizing
the direct effects of above mentioned features in models or real head anatomy
in terms of current flows and electrical potentials throughout the head might
provide more direct insight into the nature of that relationship.

Generally, the literature on volume current visualization regarding EEG
and tDCS [14, 141, 184] is relatively scarce. Often, visualization of electrical
current is based on simple voxelwise current density visualizations represented
graphically as cones, arrows [171, 182, 210], or as current density magnitudes
using colormaps [182, 210]. Visualizations with more advanced techniques,
such as streamlines, are rare in the EEG- (e.g., Wolters et al. [226]) or tDCS-
related literature [85, 146, 170]. Characterization of visualization methods for
local or global examples to evaluate visualization methods and applicability
for certain tasks and domains has not yet been analyzed sufficiently. Wolters
et al. [226] (for EEG) as well as Bangera et al. [8] (for tDCS) demonstrated
the impact of white matter anisotropy and highly conducting cerebrospinal
fluid (CSF) onto volume currents by computing streamlines using line integral
convolution (LIC, Cabral and Leedom [28] and Stalling and Hege [193]). Very
closely related to this paper is the work by Tricoche et al. [203], where several
advanced vector field methods are shown in the context of bioelectric fields

5.2. Visualization Algorithms 49

for EEG. In most existing publications, volume current visualization is not
the main focus, and visualization procedures are not used systematically to
investigate the effect of features in real biological tissue (e.g., skull holes), as-
sumptions in volume conductor models (e.g., modeling the CSF or not, taking
into account anisotropy), or experimental settings (e.g., electrode montages).
Such studies might help to better understand effects that otherwise can be
assessed only by their final results, i.e., simulated sensor readings or source
localization results [34, 35, 102].

Visualization of electrical flow fields in three dimensions can be based on
either the scalar electrical potential or on the vector-valued current flow. In
both cases, several principal techniques are available (see Section 5.2). The
aim of this work is to demonstrate not only the advantages of certain methods,
but also their drawbacks, as the applicability of these methods differ for each
case, domain, and desired analysis. To achieve this goal, we will define a set
of concise criteria for the usefulness of visualization techniques in the context
of neuroscience and apply these to the evaluation of the presented algorithms.

5.2 Visualization Algorithms

In the last decade, visualization made a big step towards interactive and visu-
ally appealing methods, fuelled by the rapid development of affordable graphics
hardware and computing devices. These developments made advanced visu-
alization available also to neuroscience. It is important to stress that the sci-
entific benefit of using visualization techniques is not just a matter of “pretty
images”, but lies in the extent to which these methods actually improve the
perception, exploration, and interpretation of scientific results. Here, we iden-
tify three criteria that convey whether and to what extent a visualization
technique is useful to a neuroscientist.

I) Comparability - The images produced by one method need to be com-
parable in a quantitative way over a series of subjects or time series.
Colormaps play an important role in this context.

II) Anatomical Context - Anatomy plays an important role for explor-
ing and navigating through the data. Without this structural context,
visualized functional data loses its anatomical embedding.

III) Interactivity - Interactivity represents the interaction of the user with
the data and its visualization. Interactivity depends on the latency be-

50 Chapter 5. Electric Fields from EEG and tDCS

tween user action and visual feedback. Due to the large amount of data
and the required detail of visualization, hardware and software limits can
be quickly exceeded.

In this section, we briefly present the standard visualization techniques
we use for evaluation and describe our particular implementations, which are
available in OpenWalnut (cf. Chapter 3). We keep the introductions on each
method short on purpose, as they are standard approaches, widely used, and
sufficiently well known in the visualization community.

5.2.1 Slice View

The simplest, yet essential way of visualizing volume data is based on mostly
orthogonally oriented slices cutting the data domain, often in axial, coronal,
and sagittal directions. These slices in three-dimensional space are used to
merge multiple colormaps, representing anatomy as well as functional data.
This way, comparability in a multi-subject or time-dependent context is en-
sured and navigation through complicated scenarios is greatly facilitated. It is
important to note in this context that an essential prerequisite of comparability
is proper image registration (e.g., [112, 188]).

5.2.2 Isosurfaces

In the context of bioelectric fields and their exploration, isosurfaces can help
to gain insight into the propagation of the field through head tissues in con-
junction with anatomical structures. Isosurfaces can be computed from scalar
potential fields, such as electrical potentials. They describe a surface in the
field, where the values are equal to an user-defined, so-called isovalue. This
concept allows visualization of value distributions inside the three-dimensional
data field. Isosurfaces derived from electrical fields are normally used to un-
derstand the propagation of the field in a volume.

Many methods are currently available to create isosurface renderings. Most
commonly known is the marching cubes algorithm by Lorensen and Cline [113]
and its improvement by Nielson and Hamann [136]. The marching cubes al-
gorithm works on the cell grid, which can be seen as the dual grid of the
original voxel grid. Each cell is defined by eight neighboring voxels, forming
the cell’s corners. The algorithm classifies each corner of each cube according
to whether the value is smaller or larger than the desired isovalue. This way,
the algorithm can check whether a part of the isosurface cuts the cube. If this

5.2. Visualization Algorithms 51

is the case, marching cubes draw this surface part, depending on the inside-
outside-configuration of each corner of the current cube. However, the native
marching cubes algorithm might be too slow to fulfill the interactivity crite-
rion. Therefore, many optimizations have been developed. These optimized
methods make use of additional data structures to speed up mesh creation in
marching cubes. Well known examples are octrees [223], interval trees [31], and
a technique called span-space optimization [111]. By now, many approaches
for isosurface rendering are available that exploit the calculation power of mod-
ern graphics processing units (GPU) and create isosurface renderings directly
by ray-casting on the GPU [94, 95, 211].

Here, we use a ray-casting-based approach in order to ensure interactive
frame rates and thereby allow direct modification of the isovalue with surface
adaptation in real-time. The underlying principle is to render the bounding
box geometry (the so-called proxy geometry) representing the data volume.
On this proxy geometry, ray-casting is performed for each rendered pixel on
the three-dimensional data domain, which is stored as a three-dimensional
memory block. In other words, a ray is shot into the data volume for each
pixel. If the ray hits the surface with the desired isovalue, the algorithm stops
for the particular pixel and further lighting and coloring can be applied.

5.2.3 Direct Volume Rendering

Another important visualization technique is direct volume rendering (DVR),
which is able to reveal features in a three-dimensional context and makes them
spatially more perceivable. To achieve the volume rendering, the algorithm
first needs a transfer function, which assigns a color and a transparency to
each voxel of the dataset. Given this, one of the most common DVR render
strategies sends a virtual ray for each pixel on screen into the data volume.
Along each ray, the colors of each intersected voxel are composited using the
transparencies, provided by the transfer function. This process finally defines
the pixel’s color on screen. This way, the physical light transport model, the
theoretical background of DVR, can be evaluated in a fast and efficient way.
An extensive description of this technique and its possible optimizations can
be found in the literature, like Real-time Volume Graphics by Engel et al. [50].
Additionally, Preim and Botha [153] cover different aspects of DVR in the
medical context.

52 Chapter 5. Electric Fields from EEG and tDCS

Due to its ability to show whole volumes of interest, the DVR technique is
widely used for visualizing three-dimensional imaging data, such as MR and
CT images.

One of the greatest challenges of DVR is the transfer function design pro-
cess, which can be complicated, even for experienced users. Therefore, many
automatic and semi-automatic transfer function techniques have been devel-
oped (e.g., [116, 164, 236]). In this paper, however, we use manually selected
transfer functions.

5.2.4 Streamlines and Explorative Tools

In flow visualization, streamlines play an important role in visualizing direc-
tional information. Basically, the streamline describes the trajectory of a par-
ticle within a vector field and can be calculated by specifying seed points.
From each of those seed points, the vector field values are used to move one
step towards the vector direction. This is done in an iterative fashion for each
new point until a certain stop-criterion is reached. Usually, advanced step and
error estimation techniques are used to achieve numerically accurate stream-
lines. For a more comprehensive overview, see Fluid Mechanics by Granger
[63].

In the current work, we calculate streamlines using a fifth-order Runge-
Kutta approach (as in shown by Dormand and Prince [46]) with 100,000 ran-
dom seed points in the entire volume. For validation, we compare results from
different runs with randomly initialized seed points. Other seeding schemes,
such as spherical seeding around the source, yield similar results in our case
because of the properties of the electric flow field, where all paths of the field
start and end at field singularities.

For the streamline rendering, we used a combination of quad-strip-based
tubes [128] and illuminated lines [117] with proper ambient shading for im-
proved perception of structure. The idea is to render camera-oriented quad-
strips instead of line-strips to emulate tubular streamlines. The illusion of
a continuous tube can be achieved by adding a quadratic intensity gradient
perpendicular to the tangential direction. This approach creates the effect
of having cylindrical tubes at each line segment that also reduces computa-
tional complexity while having a realistic visual appearance. We combined
this approach with per-pixel illumination, which creates an additional cue of
line orientation in space. Furthermore, we used directional standard coloring,
where the absolute components of tangent vectors are interpreted as red-green-

5.2. Visualization Algorithms 53

blue (RGB) color triples (red: left-right, green: back-front; blue: bottom-top).
This coloring is common in medical visualization and helps users to grasp the
local orientation of the line in space. By adding an additional ambient occlu-
sion shading, we were able to ensure proper spatial and structural perception.
We introduced this novel ambient line shading in [P10] and will present this
in Chapter 8.

Streamline Selection and Clipping

Dense streamlines generate an unwanted occlusion problem. Selective ren-
dering of streamlines is a common way to overcome this problem. Basically,
there are two options: selection and clipping. Selection is a tool that allows
removing whole streamlines, which match a certain criterion. This criterion
can be defined either automatically or manually. A commonly known selection
mechanism involves dynamic queries using multiple regions of interest (ROI)
as introduced by Akers et al. [2], which were originally developed for the ex-
ploration of white matter pathways in the human brain, where it is possible to
logically combine several cuboid regions in order to select white matter path-
ways. The query describes spatial features, such as “x is in region of interest”
and “x is not in region of interest”. This way, a very fine-grained selection of
streamlines can, in principle, be accomplished. However, in many cases a com-
plex combination of several ROIs would be needed to get the desired result.
Unlike automatic selection methods, ROI-based approaches can potentially be
combined with general or patient-specific knowledge about anatomical struc-
tures and abnormalities. Thereby, the user can directly explore electric fields
for particular anatomical features.

In contrast to selection, clipping removes all occluding parts of a rendered
scene to allow direct sight onto otherwise occluded parts of the data. This
process is usually accomplished with clipping planes, which can be placed and
oriented arbitrarily and cut the space into two half-spaces, one visible and one
invisible. Alternatively, it is possible to use anatomical structures as clipping
surfaces, such as the cortical or inner bone surface. Clipping surfaces are
typically used whenever no useful selection criterion can be defined or too
many streamlines occlude the interesting, inner, part of the ROI.

54 Chapter 5. Electric Fields from EEG and tDCS

Local Opacity and Coloring

As pointed out above, visualization of all streamlines makes it impossible to
understand the complete structure of the electrical field due to occlusion. By
using transparency, the occluded parts of the streamlines can also help to attain
a more volumetric impression. This technique allows rendering of all stream-
lines at the same time, which clarifies the three-dimensional structure of the
field. Similar to direct volume rendering, a transfer function is needed to map
each point on a streamline to its color and transparency values. Again, the de-
sign of these transfer functions can be time consuming and application specific.
Basically, we found two transfer functions very beneficial for our applications.
Firstly, the curvature of the field can be mapped to transparency in a suitable
way. Curvature models the angle between two consecutive tangents on the
streamline [200]. Using these coloring schemes produces a volumetric impres-
sion of the streamlines and emphasizes areas with many local changes (high
curvature). Secondly, interesting results can be obtained by using transfer
functions, which incorporate anatomical information. In particular, portions
of streamlines are highlighted by coloring if they are located within certain
anatomical structures of interest, such as the skull or a target region for tDCS.

5.2.5 Line Integral Convolution

Line integral convolution (LIC, Cabral and Leedom [28] and Stalling and Hege
[193]) is one of the most widely used techniques in flow visualization. LIC uses
a three-dimensional vector field of a flow to create Schlieren-like (i.e., having
a streaky, directional texture) patterns on a given surface. The direction that
is depicted by the Schlieren-like patterns will always be orthogonal to the
direction of isolines, making LIC represent the directions of the largest change
in the field.

To generate a LIC rendering, one has to define a two-dimensional domain
(i.e., a surface) within the vector field. On this surface, the LIC algorithm
initializes random points, yielding a white noise texture. The term “texture”
hereby refers to the two- or three-dimensional memory block on a graphics
card, which can be used for mapping surface structure to the currently ren-
dered geometry. The LIC algorithm then starts a streamline at each texel
(texture pixel) until each texel is either the seed point of a streamline or is
intersected by another streamline. With a streamline given on each texel, the
LIC renderer smears the original white-noise texture along each streamline

5.3. Application Cases 55

using a rectangular smoothing filter. For a more detailed description, please
refer to the literature [28, 193].

Unfortunately, the originally proposed LIC approach can be computation-
ally expensive, which is undesirable for most interactive applications. For high-
est performance in terms of interactivity, we implemented the LIC approach
on the GPU. The technique we employed is similar to other screen space LIC
techniques [62, 104, 105] and provides the interactive performance needed for
exploring the data, which is not possible with standard implementations. An-
other advantage of this approach is the ability to map LIC textures to arbitrary
surfaces without losing performance. We applied postprocessing to the surface
LIC, as described in Chapter 7. In order to compute the Schlieren-effect on
the GPU, the vector field is projected to screen space, and so is the initial
noise texture on a surface. In the following step, the projected surface and
vector field are smeared directly, by using several steps of Euler integration for
each pixel. In other words, the GPU-based LIC algorithm does not compute
whole streamlines, but uses only fragments of the streamlines. This imple-
mentation creates a similar effect as the classical LIC, but is computationally
less expensive. A main drawback of LIC is its intrinsic two-dimensionality. In
three-dimensional space, LIC-like methods exists [53] but have to deal with
occlusion, which might be possible to solve to a certain degree using trans-
parency.

5.3 Application Cases

In the following section we will describe three neuroscientifically relevant ap-
plications for electrical field visualization in the human head. The first two
examples deal with the electrical modeling of the human skull in terms of
volume conduction. The skull, with its very low conductivity, is the major ob-
stacle for Ohmic currents on their way between sources and EEG electrodes.
Hence, the correct modeling of the skull is of major importance for EEG-based
source reconstruction [35] and also for tDCS forward modeling [37, 199, 210].
Visualizing the influence that different aspects of skull modeling have on the
electric flow field can provide important insights into the relationship between
neural activity and EEG readings, as well as elucidate the impact of errors
and simplifications on modeling accuracy [210]. Here, we will first visualize
the effect of a hole in the skull, for example due to injury or surgery. For
this purpose, we use a finite element model of a human head, introduced by

56 Chapter 5. Electric Fields from EEG and tDCS

Lanfer et al. [102]. In the second case, we investigate how the intact skull can
be modeled with various levels of detail [35]. Skull modeling has also been of
general interest in recent tDCS literature [37, 156]. For all simulated volume
currents, in the first to examples (EEG), the Saint Venant source model (linear
basis functions, transfer matrix approach, [35, 166]) was used, which is imple-
mented in SimBio/NeuroFEM toolbox [40]. The third application evaluates
the visualization of electrical current based on an electrode placement common
in tDCS settings. The forward solution for tDCS was computed using software
implemented in the SCIRun package by Dannhauer et al. [33].

5.3.1 Modeling a Hole in the Skull

In clinical practice, EEG is a widely used tool to investigate and monitor brain
function. It can be utilized, for example, in the treatment of epileptic patients
in order to investigate and localize epileptic seizures [166]. The treatment of
those patients often involves surgery, where epileptogenic and tumorous brain
tissue is removed. In many cases, several surgeries have to be performed to
finally remove all epileptogenic tissues, leading to significant differences in vol-
ume conduction due to the removed tissue and remaining skull holes. It is
still not entirely clear how the EEG, generated by differently oriented and po-
sitioned electrical current sources, is affected by skull holes in their vicinity.
Therefore, we use all the previously described visualization techniques (previ-
ous section) to investigate local and global changes of volume conduction in
the presence of a skull hole (denoted Skull-Hole-Model). The impact of the
skull hole is evaluated with regard to the direction to which a source near the
hole is pointing (Direction 1: perpendicular to skull surface; Direction 2 and
Direction 3: tangential). Instead of placing the current source directly under-
neath the hole, we chose the slightly more interesting case in which the dipole
is placed near the hole. One of the two tangential directions (Direction 3)
has a larger component pointing towards the hole than the other one. It is
well known that the direction of a current source has a major impact on scalp
potential distributions - in fact, it is more important than the location of the
source. If source directions are known (cortical surface constraint, [110]) from
anatomy, e.g., derived from MRI, the solution space can be reduced to improve
source localization. Visualization can make a contribution to better constraint
dipole locations in source localization problems.

The Skull-Hole-Model introduced by Lanfer et al. [102] comprises 10 tissue
types with different isotropic conductivities: scalp, muscle, fat, soft tissue

5.3. Application Cases 57

(a) Superior (b) Posterior

Figure 5.1: Visualization of skull bone plates from MRI. Human skull bone tissues,
2 mm below the skull surface, based on a T1-weighted magnetic resonance image is
shown here. The coronal, sagittal, and lambdoidal sutures appear darker (zig-zag-
pattern). The sutures join skull bone plates together. The figure highlights soft bone
tissues (brighter areas in figure) within skull plates that are separated by sutures. A
white outline is added to clearly show the object boundaries.

(e.g., eyes), soft bone, hard bone, air, cerebrospinal fluid, gray matter, and
white matter. All generated field differences are computed by subtracting the
electrical field of the Skull-Hole-Model from the electrical field of the reference
model (without hole).

5.3.2 Modeling the Layered Structure of the Skull

In general, head modeling involves certain simplifications. These simplifica-
tions are motivated by the need to keep calculations tractable and by the
limited availability of information, for example, on tissue conductivities. The
skull comprises three layers of different conductivities: two outer layers of
hard bone and, sandwiched between them, a layer of soft bone [169] (not al-
ways present, see Figure 5.1). This fact can be accounted for by different
models. For more details, please refer to the work of Dannhauer et al. [35].
Here we explore the following possibilities: (i) modeling three layers of bone,
using measured conductivity values from the literature [3]; (ii) assuming a
single homogeneous isotropic conductivity, using a standard value from the
literature (σhard/soft bone = 0.0042 S/m); (iii) assuming a single homogeneous
isotropic conductivity, determined by fitting an optimal isotropic conductiv-
ity estimate to the three-layer model (σhard/soft bone = 0.01245 S/m) using a
bisection method within the range of hard (σhard bone = 0.0064 S/m) and soft

58 Chapter 5. Electric Fields from EEG and tDCS

bone (σsoft bone = 0.0268 S/m) conductivity (more details in [35] and review
subject 3, IH model). The terms soft and hard skull bone are also known
in the literature as spongy and compact bone [35]. The skull modeling using
an isotropic conductivity of σhard/soft bone = 0.0042 S/m has been common
practice for decades. Dannhauer et al. [35], in accordance with earlier work
by Oostendorp et al. [143], could show that a value of 0.01 S/m is more ap-
propriate. Since 0.0042 S/m still appears sporadically in default settings in
EEG [109] and older software packages for source localization, we compared
its effect in a qualitative manner. The rest of the head, both inside and outside
the skull, was modeled as homogeneous compartments (skin: 0.43 S/m, brain:
0.33 S/m). For this model (referred to as the 3-Layer-Model), we demonstrate
the use of the LIC and streamline approaches.

5.3.3 Stimulating of Brain Tissue using tDCS

Up to this point it has not been well understood how experimentally applied
tDCS affects tissues of the human head. In consequence, the exact impact
of electrode montages, parameterization of electrical stimulation, and volume
conductor properties in tDCS is still subject to research (for more details see
below). In clinical environments stimulation parameters are often based on
examples taken from the literature and might not be always ideal for individual
subjects Datta et al. [38] and Minhas et al. [130]. Furthermore, information
from literature is limited to certain stimulation setups and, therefore, new
experimental protocols are difficult to establish without having knowledge of
their impact on head tissues. Visualization of simulation results can make a
real contribution to help to understand general effects of tDCS to the human
head and especially to brain tissues.

In order to evaluate the implemented visualization algorithms we performed
tDCS simulations using a realistic head model. The model is composed of 8
tissues (skin, skull, cerebrospinal fluid (CSF), gray matter, white matter, eyes,
internal air, electrode material), which were derived from a multimodal integra-
tion approach. Skin, skull, and internal air were derived from a computed to-
mography (CT) dataset (GE CT Scanner, General Electrics, Fairfield, United
States; 1 mm isotropic voxel resolution). Gray and white matter as well as
eyeballs were derived from a MRI dataset (1 mm isotropic voxel resolution) ac-
quired with a 1.5 T Magnetom Symphony (Siemens Healthcare). We used the
tool BrainK [108] to combine the data acquired from different imaging modali-
ties in order to integrate them into the tissue segmentation. An automated pro-

5.3. Application Cases 59

cedure implemented in BrainK was used to extract and, if necessary, manually
correct, the different tissue segmentations. Furthermore, the tissues, such as
eyeball, etc., could be extracted based on the available MRI contrast and mod-
eled as homogeneous segmentation masks. Two patch electrodes (surface area:
50× 50 mm, 5 mm height) were placed on the head using a C3-Fp3 (10− 20
system) electrode montage to target the primary and secondary motor cortex.
Based on the tissue segmentation, a tetrahedral mesh (43.7 million elements,
7.7 million element nodes) of the head and electrodes was generated using a
novel meshing package (cleaver V1.5.4, [24]) that preserves conformal mesh
boundaries and guarantees a certain mesh quality (dihedral angles 4.7-159.1).
Isotropic conductivity tensors Dannhauer et al. [33] were assigned to each
of the tetrahedral elements depending on tissue type: skin (0.43 S/m, [35]),
skull (0.01 S/m, [35]), cerebrospinal fluid (CSF, 1.79 S/m, [11]), gray mat-
ter (0.33 S/m, [35]), white matter (0.142 S/m, [72]), eyes (0.4 S/m, [36]),
internal air (1e − 15 S/m, [36]), electrode material (1.4 S/m, [36]). A stiff-
ness matrix was computed for the resulting FEM model using the SCIRun
environment [33]. For the two current injecting patch electrodes, the electri-
cal boundary conditions were considered using the complete electrode model
by Polydorides and Lionheart [152] and Somersalo et al. [190], considering an
electrode-skin impedance of 5 kΩ.

To study the effects of volume conductor modeling for EEG and tDCS
stimulation, we performed careful simulations. Our modeling efforts naturally
contain modeling simplifications (e.g., no white matter anisotropic conductiv-
ity modeling) with respect to realistic conditions. However, we believe that
our head models capture important features of volume conduction and, there-
fore, results as well as the drawn conclusions are helpful to understand better
specific effects in EEG and tDCS. Experimental validation in clinical settings
is still an indispensable issue. Only a few studies in the literature have focused
primarily on experimental validation of current injection. In an early animal
study, Hayes [73] investigated current injection in vivo using anaesthetised spi-
der monkeys, injected 58mA through surface electrodes and measured voltages
at intracerebral probe sites. The author was able to estimate different tissue
resistivities (scalp, skull, brain) to investigate their effects on the current flow
through the monkey’s head. To obtain results for human physiology, Rush
and Driscoll [167] used data from an electrolytic tank that contained a half-
skull structure with attached surface point electrodes. Currents were injected
throughout the surface electrodes at different locations and electrical potentials

60 Chapter 5. Electric Fields from EEG and tDCS

were measured, its attenuation was depicted with respect to the skull center
and resistivities were estimated. For a human volume conductor model, and
finite tDCS electrodes, Datta et al. [39] validated their simulations with ex-
perimental electrode readings (errors for potentials between 5-20%) conducted
using a whole head electrode array and low amplitude current injection (1mA).
Besides empirical evidence supporting the effects of tDCS-like technologies in
a broad range of medical applications (see above for more details) in human,
there are numerous studies investigating cortical excitability and activity al-
terations induced via tDCS (for more details see e.g. [25, 26, 126, 137, 139,
148, 192]). For example, Caparelli-Daquer et al. [29] as well as Edwards et al.
[47] used event-related potentials (EEG) to prove the ability of focal stimula-
tion of the motor cortex using tDCS. The used volume conductor models in
the current work, 3-Layer-Model and Skull-Hole-Model [35, 102], are based on
segmentations from structural MRI contrasts similar to many studies in the
literature [33, 34, 36, 37, 38, 39, 70, 85, 107, 130, 166, 170, 210, 226]. How-
ever, the head model used for tDCS in this work represent a more novel type
that incorporates multimodal imaging data (MRI, CT, cf. Section 5.3.3) for
more realistic modeling of scalp, skull, and internal air cavities [132]. It also
features a more advanced current injection formulation (complete electrode
model, [190]) that is frequently used in electrical impedance tomography [152].
For all three applications cases, the volume conductor models were parameter-
ized with respect to tissue conductivities (see above for more details) widely
applied in recent literature.

5.4 Results and Discussion

We have applied the methods from Section 5.2 to all three application cases. In
this section, we evaluate and review the usefulness of the visualization methods
for the chosen applications with respect to the three criteria described above:
comparability, anatomical context, and interactivity (see Section 5.2).

5.4.1 Surfaces and Direct Volume Rendering

Isosurfaces

We applied the interactive isosurface ray-tracer to the Skull-Hole-Model data
and visualized the scalar electrical potential as the difference between modeling
approaches. Figure 5.2 shows isosurfaces (red for +0.2 µV ; blue for −0.2 µV)

5.4. Results and Discussion 61

(a) Direction 1 (radial) (b) Direction 2 (first tangen-
tial)

(c) Direction 3 (second tan-
gential)

Figure 5.2: Isosurface renderings for the Skull-Hole-Model. These isosurfaces
show, for each source direction, the potential differences (red for +0.2 µV ; blue
for −0.2 µV) between the Skull-Hole-Model and the reference model. For the po-
sitions and orientations of the dipoles, see Figure 5.12. These surfaces denote the
border between the volume with an absolute difference of more than 0.2 µV on the
inside and less than 0.2 µV on the outside. Directly comparing the colormaps of the
reference field and the skull-hole fields does not allow a quantitative rating of differ-
ences between the two fields. Using the difference field instead unveils the structural
difference caused by the skull-hole very explicitly. The images demonstrate that the
influence of the skull hole is different (more wide-spread) for the second tangen-
tial source orientation (Direction 3). It is clearly shown that the skull-hole only
influences the area around the hole and that the difference of reference model and
Skull-Hole-Model on the remaining field is rather low.

generated from a source located near the skull hole, in difference to the refer-
ence model without hole. The rendered isosurfaces represent the boundary of
a spatial domain, where the absolute potential difference between the models
exceeds a value of 0.2 µV . These rendering clearly show that the skull-hole
influences the electrical field only near the hole itself. Note that, while the
visualization of an isosurface of the potential difference is useful, as it renders
a volume within which significant differences occur, isosurfaces of the poten-
tials in either condition are far less useful, as the potential value depends on a
reference (so, one would render a volume, where the potential is close to the
one at the reference electrode).

Comparability - In general, isosurfaces allow a high degree of compara-
bility, and proper lighting can support a direct comparison of local shape and
structure. Additionally, colormaps are useful in order to give cues about the
surface potential or current density magnitude, which in turn increases com-
parability. Note that comparability is ensured only if the range of the values
in all datasets is the same. Thus, normalization might be needed.

Anatomical Context - The isosurface approach has some significant ad-
vantages with respect to its anatomical embedding. Firstly, isosurfaces can be

62 Chapter 5. Electric Fields from EEG and tDCS

rendered in combination with other objects, such as slices or surfaces. Sec-
ondly, isosurfaces can be combined with anatomical information, e.g., from
magnetic resonance imaging (MRI). Naturally, anatomical context can help to
increase comparability. However, combining anatomy and colors could also cre-
ate confusing renderings, if too much information is combined into one color.
A possible solution to overcome this problem is to use orthogonal slices for
anatomy, as shown in Figure 5.2.

Interactivity - Since the isosurface renderer is implemented on the GPU,
the interaction with surface renderings and surface modifications can be done
without a significant loss of performance. For example, the modification of
isovalues allows for a direct real-time exploration of the potential field and its
propagation inside the head, just by pulling a slider.

Skull-Hole-Model Isosurfaces used to render electrical fields and differences
between electrical fields can help to interactively explore these fields. In Fig-
ure 5.2, the electrical field difference between the Skull-Hole-Model and its
reference model (same, but without hole) for all three source orientations is
rendered. It can be seen that all three source orientations lead to similar dif-
ference renderings. With closer inspection, the radial direction (Direction 1)
and the first tangential source orientation (Direction 2) have a more similar
appearance than the second tangential direction (Direction 3). It appears that
the second tangential direction (Direction 3) is more influenced by the pres-
ence of the skull hole. This is expected, as this direction is pointing towards
the center of the hole. With the help of LIC, this can be shown more clearly,
as done in section 5.4.3.

3-Layer-Model For the 3-Layer-Model, isosurfaces are not very useful since
model differences are diverse and inhomogeneously distributed in the skull.
Hence, it was difficult to define meaningful surfaces based on isovalues for this
particular application.

tDCS In Figure 5.3, the current density magnitude is depicted (without iso-
surface truncation) on orthogonal slices cutting through all materials modeled
in the volume conductor for the tDCS example. It can be seen that the highest
current density magnitudes seem to be located on the electrode sponge-scalp
interface [191]. Further, the impact of high conducting CSF can be clearly
seen with higher current density magnitudes values close to the injecting elec-
trodes. The current density magnitude is almost zero in the air-filled cavities

5.4. Results and Discussion 63

Figure 5.3: Current density magnitude plot for tDCS example on cutting plane.
A coronal, sagittal, and axial view of the volume conductor, where current density
magnitudes (white-to-red colormap) are mapped. High current density concentrations
are present at the electrode sponge-scalp boundaries as well as in CSF. Although the
current density around the electrode sponge-scalp boundaries was maximally up to
4.2 A/m2, we have chosen a windowing interval of [0, 2] A/m2. This way, we are
able to show the rapidly decreasing current density in vicinity of the sponge-scalp
boundaries, which, otherwise, would not be seen as their value would be mapped to
a nearly white color.

and small in the skull tissue. Furthermore, in Figure 5.4, the current density
magnitude is mapped onto material surfaces: scalp, skull, and brain. The
visualization clearly shows the impact of the different conductive materials
on the current density. As also implied in Figure 5.3, the increased current
densities are concentrated around the edges of the electrode sponge, with the
highest values near the corners. The current density on the skull surface is
only slightly smeared out since the skin is just 2-3 mm thick and skin resis-
tance is not very high compared to other materials (skull, air). However, the
current density on the brain surface is very broadly distributed due to the
low conductivity of skull tissue and the high conductivity of CSF. Another
important point to mention here is the window-function used to map a certain
current density magnitude interval to a color intensity interval. In Figure 5.4,
the values on each tissue are mapped to the full white-red interval using a
different window for each tissue. This windowing is motivated by the rapidly
decreasing maximum magnitude when moving from the head surface towards
the brain. Without the windowing, the colormapping on the brain would be
nearly white.

64 Chapter 5. Electric Fields from EEG and tDCS

Figure 5.4: Current density magnitude (white-to-red colormap) computed for a
standard tDCS electrode setting displayed on tissue boundaries: scalp ([0, 2] A/m2),
skull ([0, 1.5] A/m2), and brain surface ([0, 0.5] A/m2). We have used different
windowing intervals for each tissue boundary to cope with the rapidly decreasing
current density. This way, we avoid that the maxima on the skin influence the
coloring on inner tissues. It can be seen that the conductivity profile of the modeled
materials has different effects on the current density distribution.

5.4. Results and Discussion 65

(a) Direction 1 (radial) (b) Direction 2 (first tangential)

(c) Direction 3 (second tangential) (d) Direction 3 (second tangential)

Figure 5.5: Direct Volume Rendering (DVR) for the Skull-Hole-Model. DVR for
the potential difference fields for each source orientation in the Skull-Hole-Model.
As Figure 5.2 indicated, the skull hole has the strongest influence on the field sim-
ulated from the second tangential direction. The used transfer function shows the
spreading potential difference between the Skull-Hole-Model data and the correspond-
ing reference field. The transfer function maps negative potential differences to blue
and positive differences up to 0.5 µV to a color pattern switching from red to yellow
every 0.033 µV . This way, the spreading structure can be visualized in an intuitive
way using direct volume rendering and is conceptually similar to isolines but has
the advantage of also showing the spatial extend of intervals. For the positions and
orientations of the dipoles, see Figure 5.12.

66 Chapter 5. Electric Fields from EEG and tDCS

Direct Volume Rendering

Similar to isosurface renderings, we applied a red-blue colormap to denote
positive and negative potential differences for the Skull-Hole-Model. Figure 5.5
depicts a volume rendering, with a specific transfer function. This transfer
function was designed to specifically emphasize the gradient of the potential
difference outside the skull hole, rather than its absolute values. For this
purpose, we stippled the positive part of the transfer function to map the
positive potential difference to alternating colors (red and yellow in this case).
The negative part is a fading blue, to show the negative potential difference
inside the skull. This is conceptually similar to isolines, but has the advantage
of also providing information on the spatial extent of a certain value interval
within the data.

Comparability - Like isosurfaces, DVR can provide a high comparability,
if transfer function and data range stay the same over all datasets. Transfer
functions, which were designed to unveil certain features or value distributions
in the data, can provide a particularly high degree of comparability (e.g., Fig-
ure 5.5). Admittedly, this is not true in general and depends on the transfer
function and the data. Focus and context techniques, like the magic volume
lens [212], can help to selectively compare certain areas of the volume. How-
ever, unlike isosurfaces, DVR suffers from a lack of clear and crisp surfaces.
Local illumination can additionally help to create surface-like effects, which
influence the colormap. Overlap and high transparency in the transfer func-
tion further complicate comparisons over multiple renderings as they falsify
the coloring of certain features or structures.

Anatomical Context - The combination of DVR and anatomical struc-
tures is a difficult problem. The additional use of orthogonal slices with
anatomical colormaps is a difficult task as well. Figure 5.5 shows a feature-
enhancing transfer function, where the shape of the head happens to be re-
flected quite well by the shape of the potential field.

Interactivity - Modern GPU implementations of DVR are able to perform
high-quality volume renderings in real-time with interactive transfer function
design. The interactive modification of transfer functions with an easy-to-use
interface is important to allow neuroscientists to explore datasets with different
parameters quickly and intuitively.

Skull-Hole-Model In Figure 5.5, a DVR of electrical field differences is shown
for all three source orientations. To emphasize specific changes of positive

5.4. Results and Discussion 67

potential differences, the transfer function includes an alternating red-yellow
colormap (see Figure 5.5). For the negative potential differences, the transfer
function uses a blue-transparency fading. It can be seen that positive potential
differences are present in outer parts of the head (mainly in skin tissue). The
negative range of the potential differences is primarily present inside the skull
(in the brain tissues), whereas the biggest differences are close to the skull
hole. In comparison to isosurfaces, we obtain similar results. DVR results for
Directions 1 and 2 appear similar in contrast to Direction 3. Even though Di-
rection 1 and Direction 2 look similar, there are potential differences, mainly in
the brain tissue. It is also apparent that the potential gradients point radially
towards the center of the hole, but their strengths are modified by the head
shape and clearly differ for Direction 3 as compared to the other two directions.
Another interesting finding is visualized by the different spatial frequencies of
the circular structure. This pattern is different for Direction 1 and Direction 2
as compared to Direction 3, which has a much higher spatial frequency. This
frequency indicates that the potential differences in Direction 3 increase much
faster around the skull hole. The higher spatial frequency also proves that for
this particular source orientation, the skull hole has the biggest effect. This
information could not be conveyed by just one isosurface. DVR provides a
simple way to represent multiple value ranges, which spatially overlap.

3-Layer-Model Similar to using isosurfaces, it is difficult to gain any benefits
and new insights into volume conduction from using DVR for the 3-Layer-
Model due to the very local effect, confined to the skull compartment. It is
hard to model a proper transfer function, which would be able to provide the
needed resolution for seeing local details without the inherent occlusion.

tDCS Also for the chosen tDCS example, it appeared difficult to design a
proper transfer function to highlight the mostly local effects. The situation is
further complicated by the fact that similar ranges of current density magni-
tude values are present in skin and CSF tissue, which would lead to significant
occlusion effects.

5.4.2 Streamlines and Explorative Tools

In this section, we explore streamlines and streamline rendering methods in
all three application cases. We calculated streamlines for all model variants.

68 Chapter 5. Electric Fields from EEG and tDCS

(a) Direction 1 (radial) (b) Direction 2 (first tangential)

(c) Direction 3 (second tangential) (d) Direction 3 (second tangential)

Figure 5.6: Streamlines depict the electrical flow field in the Skull-Hole-Model.
The skull mask, including the hole, has been added to provide anatomical context.
As already seen in Figures 5.2 and 5.5, the influence of the skull hole seems to
be nearly identical for source orientations Direction 1 and Direction 2. With the
second tangentially oriented source (Direction 3), the field leaves the skull through
the hole and enters it again through the eyes and foramen magnum due to the higher
conductivity there. The streamlines use tangential coloring. This coloring can make
the local orientation of each point of the streamline in three dimensions more visible,
without the need to rotate the scene. For the positions and orientations of the dipoles,
see Figure 5.12.

5.4. Results and Discussion 69

Figure 5.7: Streamlines depict differences of the electrical flow fields. Direct com-
parison of the directinally (global) colored streamlines computed for each source ori-
entation and both models: reference model (without hole) on the right and Skull-
Hole-Model on the left. Shown are those streamlines, which are running through
the skull hole (also for the reference case without the hole). Unlike Figure 5.6, this
figure shows that the field of the radial source is also influenced by the skull hole.
However, Direction 3 is most strongly influenced, which can also be seen in direct
volume rendering results (Figure 5.5). In comparison to the previously described
methods, this technique offers a detailed view. For the positions and orientations of
the dipoles, see Figure 5.12. The skull mask is a binary mask that has been processed
in an automatic pipeline. It is of suboptimal quality and contains several processing
artifacts. Mesh refinemend and smoothing does not help to get rid of the artifacts.

70 Chapter 5. Electric Fields from EEG and tDCS

(a) (b)

Figure 5.8: Clipping planes used for streamlines with anatomical context in the
Skull-Hole-Model. The plane is placed in the radially oriented source. With such a
clipping plane (or a combination of planes), it is possible to select a certain fraction
of the streamlines. Part (a) shows a top view of the applied clipping plane. As
the isosurface prohibits the direct view onto the dipole, it is often more useful to
combine interactive selection tools with orthogonal anatomy slices for orientation.
In (b), such an axial slice helps to improve orientation and allows an unhindered
view to the dipole. For the positions and orientations of the dipoles, see Figure 5.12.

If not stated otherwise, the streamlines are colored according to their local
tangent direction.

Comparability - A quantitative comparison between several streamlines
is not reasonably possible. In Figures 5.6 and 5.7, global differences in stream-
lines generated from different models can be judged subjectively by the user.
The user can directly compare density, orientation, and number of streamlines
among several images. For a comparison, it is important to provide the same
coloring and value ranges for colormaps throughout the models.

Anatomical Context - Embedding of anatomical context with stream-
lines can be a problem. In very dense areas near the source (or in deeper
brain regions), occlusion becomes a serious problem and can prohibit the di-
rect sight to anatomy. This problem can be solved to a certain degree by
utilizing clipping surfaces or transparency, such as in Figures 5.8 and 5.9.

Interactivity - The streamline calculation process itself cannot be per-
formed in real-time. However, rendering large numbers of precomputed stream-
lines is possible in real-time. The selection and coloring using transfer functions
can also be done interactively, which is required for efficient exploration of the
data, with the possibility to display details on demand.

5.4. Results and Discussion 71

(a) Curvature only

(b) With anatomy in 3D

Figure 5.9: Perception of streamlines in 3D. Electrical flow field of the Skull-Hole-
Model in combination with transparency and a curvature-based transfer function.
The transparency, which is defined by the line curvature at each point, highlights the
shape of the electric field deeper inside the brain. Curvature is a common measure
to describe how much a streamline deviates from being straight. In (a), no anatomy
is provided, rendering spatial relations difficult to see. Due to the missing depth
cue, these types of renderings are useful only if the viewer interacts with the scene,
allowing perception of spatial relations and structure of the field inside the head. The
image shown in (b) uses stereoscopic (anaglyph three dimensional) rendering to add
a spatial cue and, thus, allows perceiving the spatial relation of the field structures
towards a given anatomical cue. For the positions and orientations of the dipoles,
see Figure 5.12.

72 Chapter 5. Electric Fields from EEG and tDCS

Figure 5.10: Streamlines through volume conductor. Streamlines show results of a
tDCS simulation with respect to the brain surface while using a colormap to encode
current density magnitude (white-to-red colormap, [0, 1] A/m2).

Skull-Hole-Model In Figure 5.6, the streamline tracking results are shown for
all three source orientations. Further, all streamlines outside the skull (mainly
in skin tissue) are running more or less tangentially to the skin surface. For
different source orientations, the impact of the skull hole is very different.
For Direction 3, the impact of the skull hole is most apparent since a huge
number of streamlines are passing through it. This result is quite interesting,
because Direction 3 is a tangentially-oriented source, which, however, has a
relatively large component pointing towards the center of the hole. The source
is located slightly superior and anterior to the skull hole (see radially oriented
Direction 1 for reference). Furthermore, besides the impact of the skull hole,
some other effects are visible. Firstly, the high tissue conductivity of the
eyes evidently diverts some of the streamlines (i.e., electrical current) and
makes them pass through the natural skull openings (e.g., for optical nerves)
at these locations. Secondly, a similar behavior is apparent at the foramen
magnum. This behavior is generally expected at locations where the skull is
not closed or a conductivity bridge (through low-conductance skull tissue) can
be established, for example at surgery holes, sutures, etc.

tDCS Figure 5.10 displays streamline tracking results in relation to the brain
surface. The depicted streamlines indicate that electrical current enters the
skull tissue radially close to the injecting electrodes. As in the Skull-Hole-
Model, the streamlines are strongly bent when flowing through a natural skull
opening (foramen magnum).

5.4. Results and Discussion 73

Streamline Selection and Clipping

Skull-Hole-Model In Figure 5.7, the particular effect of the skull hole was
investigated by visualizing streamlines running through the hole (or the site
of the hole for the reference model). A ROI box was used that approximately
covers the hole (shown in cyan), thus selecting only streamlines that actually
pass through the hole. For comparison, the streamlines for the reference model
regarding the same source orientation are depicted. It can be seen that, for
all three source directions (Direction 1, Direction 2, and Direction 3), there
appears to be a clear difference in volume conduction. With respect to the ab-
sence of the skull hole, the number of the outgoing streamlines in the reference
model is much smaller. Again, the biggest difference between the models can
be seen for Direction 3. In Figure 5.8, another selection tool, the clipping plane
approach, is shown. With such a clipping plane or a combination of planes,
it is possible to select a certain fraction of the streamlines. In combination
with anatomical slices, interesting areas, e.g., the source singularity, can be
investigated more precisely.

tDCS In tDCS, the streamline algorithm always creates streamlines starting
and ending at the injecting electrodes, independently from where the seed
points were placed. This means that a ROI box covering the motor area un-
derneath the anodal electrode (C3) selects the majority of streamlines running
through the target brain tissue (motor cortex) as shown in in Figure 5.10. The
advantage of using the selection tool is to exclude those streamlines, which run
through the skin and, thus, would otherwise occlude the view onto the much
more interesting streamlines through the target region. All in all, the tDCS
and the Skull-Hole-Model share the same advantages and disadvantages for the
respective methods. In both examples, streamlines are adequate for showing
the global structure of the electrical field, but are limited when it comes to
local details.

Local Opacity and Coloring

Skull-Hole-Model In Figure 5.9, a curvature-based transfer function in combi-
nation with the streamline approach is shown. The curvature-based rendering
accentuates areas with high streamline curvature, which correspond to tissue
conductivity jumps or gradients based on large differences in potentials of ad-
jacent nodes. This rendering makes it possible to see interesting details (such

74 Chapter 5. Electric Fields from EEG and tDCS

(a) (b)

Figure 5.11: Streamlines through the 3-Layer-Model data. Coronal view of the
3-Layer-Model, where a source is placed near the thalamus. The streamlines were
made opaque inside the skull and slightly transparent elsewhere. The color of each
streamline inside the skull reflects its local direction (tangential coloring). Due to the
coloring inside the skull, the field lines clearly undergo different degrees of diversion,
depending on the angle at which they enter the skull: (a) volumetric rendering of all
streamlines, (b) rendering of streamlines within a slab (thickness 10 mm) around a
coronal slice passing through the thalamus, which removes the occlusion problem and
unveils the streamline structure inside the slab.

as the mainly affected streamlines) inside the model without the need of ex-
plicitly selecting them. It is important to note that the full benefit of this
technique is only achieved in combination with modern display techniques,
such as interactivity (the user can turn around the object in real-time) and 3D
display using modern display devices (see Figure 5.9(b)).

3-Layer-Model Figure 5.11 shows a streamline rendering of a source located
in the human thalamus. Since all areas inside the skull are modeled isotrop-
ically (with a brain conductivity of σbrain = 0.33 S/m), the streamlines are
smooth (due to the absence of conductivity jumps). However, the skull is
modeled inhomogeneously as done by Dannhauer et al. [35] with much lower
conductivities for soft and hard bone, as compared to isotropic skin and brain
conductivity. Therefore, the streamlines, being representations of the electrical
current, are bent at boundaries between tissues.

tDCS In Figure 5.10, generated streamlines are colored with current density
magnitudes using a white to red colormap. Clearly, the corners of the elec-
trode sponges touching the skin surface have the highest current densities.
The current densities inside the skull are significantly smaller compared to the

5.4. Results and Discussion 75

(a) Direction 1 (radial) (b) Direction 2 (first tangen-
tial)

(c) Direction 3 (second tan-
gential)

Figure 5.12: Line Integral Convolution (LIC) images on a coronal slice through the
hole combined with the electric fields for all three source orientations in the Skull-
Hole-Model. Small differences in current flow between the source orientations can be
seen. However, a direct quantitative comparison is not reasonably possible with LIC.
The green bar in each image indicates the source orientation and position. The soft
bone tissue is colored in red, the hard bone tissue in blue, and the remaining head
tissues in gray.

skin. However, current densities magnitudes appear to be higher in CSF even
though they are more distant from current injecting sites most likely, because
of the high conductivity (σCSF = 1.79 S/m) of CSF compared to surround-
ing materials. Similar to the Skull-Hole example, a curvature-based coloring
of the streamlines would be possible. This coloring could help to find con-
ductivity bridges indicating problems that have been overlooked during tissue
segmentation.

5.4.3 Line Integral Convolution

We applied LIC to all three application cases (see Figures 5.12, 5.13 and 5.14)
on orthogonally oriented slices. A skull mask was used as a colormap for the
Skull-Hole-Model (see Figure 5.12). Furthermore, we combined tissue masks
(from tissue segmentation) as an additional colormap for the different bone
layer models (see Figure 5.13) and tDCS-Model (see Figure 5.14). Additionally,
we applied LIC on the surface of the skull and the brain in the tDCS example
to demonstrate the possibilities and problems of surface LIC (Figures 5.15
and 5.16).

Comparability - LIC provides a global overview of the electrical field as
well as specific local details. Both aspects can be compared between mod-
els and to other visualization techniques. Unlike colormapping, quantitative
comparisons with LIC are not reasonably possible - only the local direction

76 Chapter 5. Electric Fields from EEG and tDCS

(a) Tissue Mask (b) 1-Layer-Model:
σsoft/hard bone = 0.0042 S/m

(c) 1-Layer-Model:
σsoft/hard bone = 0.01245 S/m

(d) 3-Layer-Model:
σsoft bone = 0.0287 S/m and
σhard bone = 0.0064 S/m

Figure 5.13: Line Integral Convolution (LIC) for the 1- and 3-Layer-Model. In
(a), the different tissue types are visualized (skin in beige, CSF in green, gray matter
in gray, white matter in light-gray, hard bone in blue, and soft bone tissue red).
CSF, gray and white matter are modeled electrically using an isotropic conductivity
of 0.33 S/m. The zoomed images use LIC to show the influence of the occipital
fontanel regarding the electric flow field, for different values and bone conductivity
models. The source is located in the thalamus for the 3-Layer-Model. (c) shows
the best matching isotropic model, which seems to be a good approximation of the
3-Layer-Model (d).

5.4. Results and Discussion 77

(a) Sagittal Slice

(b) Zoomed In

Figure 5.14: Line Integral Convolution (LIC) images mapped on a sagittal slice
(right panel: zoomed) through volume conductor shows results of a tDCS simulation
in combination with a colored background based on tissue labels. The different tissue
types are visualized using a colormap similar to the one in Figure 5.13: skin in
beige, CSF in green, gray matter in gray, white matter in light-gray, skull in blue,
the eyeball in yellow, and the tDCS electrode sponge in purple.

78 Chapter 5. Electric Fields from EEG and tDCS

(a) tDCS field on the skin.

(b) tDCS field on the brain.

Figure 5.15: Line Integral Convolution (LIC) and colormapping of the potential
field on the skin and brain masks. Both images show the possibilities of LIC in
surfaces. Especially interesting are anatomical surfaces, whose conductivity profiles
modify the behaviour of the field. The top image (a) shows that the field enters the
skin nearly perpendicular below the tDCS sponge. It flows around the brain (in the
cerebrospinal fluid), as depicted in (b).

5.4. Results and Discussion 79

(a) Projection of nearly perpendicular vectors.

(b) Cutoff angle of 45 degree.

Figure 5.16: Line Integral Convolution (LIC) and colormapping of the potential
field on the skull mask with two different cutoffs for the vector projection. In (a),
even nearly perpendicular vectors are projected to the surface. In (b), vectors with
an angle towards the surface of more than 45 degree were removed. The difference
between both images is obvious and demonstrates the influence of visualization pa-
rameters on the interpretation and expressiveness. (a) shows electrical flow, which
is not there at all, as seen in (b).

80 Chapter 5. Electric Fields from EEG and tDCS

of the current flow can be inspected qualitatively. In combination with col-
ormaps, comparability can be enhanced, since colormaps allow the combination
of the flow direction with other details (such as the strength of local potential
changes). In terms of visibility, the contrast between colormaps and LIC may
be a limiting factor. Moreover, LIC textures modify color intensities, which
can lead to misinterpretation of the colormap. Again, similar to the other
methods, it is important to make sure that the same algorithm parameters are
used throughout the whole series for comparison.

Anatomical Context - As mentioned above, a combination of colormaps
with LIC is possible (although not without limitations). Another option is
to use geometric information derived from anatomical data (isosurfaces) for
LIC. The LIC effect can be applied to the surface, serving as an anatomical
cue and can easily be combined with orthogonal slices showing the anatomy.
Figures 5.15 and 5.16 show this for the tDCS electrical field data on the skin,
skull, and brain. Figure 5.16 also shows a downside of surface-based LIC.
The projection of the electrical flow vectors to the surface needs to be cutoff
for a certain vector-to-surface angle. When choosing a too steep angle, the
projection of the vector yields questionable results. This is, again, caused by
the inability to represent the length of the vector as quantitative information
in the Schlieren-pattern.

Interactivity - Usually, the standard LIC implementation is too slow for
interactive modification and exploration. In contrast, our GPU-based ap-
proach does allow rendering at interactive frame rates.

Skull-Hole-Model In Figure 5.12, LIC textures are shown on a coronal slice,
for a source near the skull hole (see mask), for the three current directions
(Direction 1, Direction 2, Direction 3). It can be seen in all three LIC images
that some currents flow through the skull hole. However, as mentioned above,
this effect cannot be quantified. The seemingly “noisy” parts of the texture
indicate flow directions perpendicular to the depicted slice.

3-Layer-Model Figure 5.13 shows LIC results for the different ways of skull
modeling. The figure shows the area around the occipital suture, whereas the
only difference between Figures 5.13(b)-5.13(d) is the applied conductivity pro-
file of the skull. In Figure 5.13(b), the skull is modeled with the traditionally
used isotropic conductivity (σhard/soft bone = 0.0042 S/m). Previous work [35]
showed that the isotropic conductivity must be much higher in a realistic set-
ting (Figure 5.13(c)). For that model, the isotropic conductivity was fitted

5.4. Results and Discussion 81

(see section 5.3.2) for more details) to the 3-Layer-Model, yielding an isotropic
value of σhard/soft bone = 0.01245 S/m. In Figure 5.13(d), the LIC result for
the reference model is shown. The reference model uses experimentally mea-
sured conductivities for soft (red) and hard bone (blue). Soft and hard bone
distribution was estimated by skull segmentation based on a T1-weighted MR
image. The LIC approach allows detailed insight into flow features and struc-
tures inside the differently modeled bones and emphasizes their difference. It
can be seen that Figures 5.13(c) and 5.13(d) are much more similar than Fig-
ures 5.13(b) and 5.13(d). Furthermore, LIC streamlines that are, due to the
presence of soft bone, diverted tangentially with respect to the skull surface,
can be clearly identified (Figure 5.13(d) compared to Figure 5.13(c)). For
more details about the approximation of the three-layered skull structure using
a global isotropic conductivity model please refer to Dannhauer et al. [35].

tDCS Figure 5.14 depicts LIC streamlines of a sagittal slice passing through
the frontal electrode (Fp2) combined with a colormap helping to perceive ma-
terial boundaries. Similar to Figure 5.13 and more detailed as in Figure 5.10
the dominance of a radially-oriented electrical current is strikingly apparent.

Wagner et al. [210] investigated the impact of homogeneous and inhomoge-
neous skull modeling for tDCS in which they varied conductivity ratios of soft
and hard bone within ranges that were experimentally determined as described
by Akhtari et al. [3]. They depicted the results as cones having normalized
length. Based on their visualizations they concluded that currents mainly
flow radially through isotropically modeled skull tissue. Their investigations
contained inhomogeneous skull models in which they stepwise increased the
hard-to-soft bone conductivity ratio (nominally soft bone conductivity) from
averaged [3] to ratios that led to mainly tangential current flow within soft bone
structures. They claimed that for higher hard-to-soft bone conductivity ratios
their chosen target regions were significantly affected by those changes, depend-
ing on their location. Additionally, they used similar cone plots to investigate
changes in current flow direction in the case of including CSF, differentiating
between brain tissues (gray and white matter) in the volume conductor model
and using color maps to point out the impact of white matter conductivity
anisotropy. Our results confirm the results reported by Wagner et al. [210]
for tDCS but also for EEG as shown in Figure 5.13 and 5.14, respectively.
Figure 5.15 further substantiates this. The field enters the skin nearly perpen-

82 Chapter 5. Electric Fields from EEG and tDCS

dicularly below the tDCS sponge, while Figure 5.15(b) shows the tangential
flow around the brain surface.

5.5 Future Work and Conclusion

In the previous sections, we have highlighted advantages and disadvan-
tages of several standard visualization techniques exemplarily for three
interesting models regarding the influence of the human skull and tDCS stimu-
lation on bioelectric field simulations. We used visualization methods to create
an intuitive understanding of volume conduction effects, which otherwise can
be described only in a rather counter-intuitive way by numerical measures [35].
Most importantly, we assessed all algorithms in all examples with respect
to clearly defined criteria: (1) the quantitative comparability between datasets,
(2) the possibility to provide anatomical context, and (3) the feasibility of in-
teractive use. In particular, the latter point is often underestimated in the
written literature with its unavoidably static images. The possibility to in-
teractively change parameters or to rotate the image in three dimensions can
often provide more insight than very sophisticated renderings trying to pack
as much information as possible into static images. In our work, we did not go
into much detail for this point, since we ensured that each used method works
interactively, by utilizing the vast computational power of today’s graphics
hardware. But of course, this is not necessarily possible in general.

Isosurfaces and Direct Volume Renderings provide a quick overview of the
data and the influence of anatomical structures on the field propagation. These
methods were especially fruitful for the visualization of global features of the
field in the Skull-Hole-Model. The local features of the 3-Layer-Model could
not be sufficiently captured. In the chosen tDCS example, isosurfaces were
especially helpful to visualize the current density magnitude on anatomical
structures. Unfortunately, DVR suffers from the problem of complicated and
time-consuming designs of useful transfer functions and hence is the subject
of further research.

The visualization using streamlines provides more detail on the structure
of the actual electrical field, especially the influence of the skull hole and
current flow properties in tDCS stimulation, which can be seen very clearly
together with filter and selection tools. The selection mechanisms allow for
simple exploration and comparison of the field in conjunction with anatomy
and model-specific regions. As with DVR and Isosurfaces, the prime benefit

5.5. Future Work and Conclusion 83

of this method is the exploration of features within a global scope. For the
3-Layer-Model, local effects are hard to interpret with streamlines as the inter-
esting areas are small and cluttered inside the skull tissue. The same is true
for the tDCS example, where dense streamlines occlude the more interesting,
local stream features in certain tissue types. Selection mechanisms can help
to filter out uninteresting streamlines to avoid intense visual clutter.

Finally, LIC proved ideal for exploring the interesting local details in the
3-Layer-Model and tDCS. It provides a qualitative explanation for local ef-
fects of different skull models and their statistically measured similarities and
dissimilarities. Unfortunately, quantification is difficult with LIC. Especially
for the Skull-Hole-Model and tDCS, the combination of LIC with colormaps
is difficult, as LIC directly influences the brightness of the underlying col-
ormap, which can lead to misinterpretation. LIC is an interesting option, as
it provides local details otherwise invisible with streamlines. Its limitation to
surfaces and slices prohibits the fast volumetric perception of the field. Volu-
metric LIC (3D-LIC, [53]) methods could help if a proper importance-function
could be defined, which might be difficult and very application-dependent. We
have shown the influence of parameter selection on the resulting images using
a surface LIC. A parameter is used as criterion for deciding whether the vector
still contains valuable information on the surface or not. Generally, parameter
tuning is a necessary evil in a lot of visualization techniques. Parameters allow
flexibility, but at a cost.

Altogether, visualization provides a tremendous insight into vol-
ume conduction and helps to understand the underlying models and
the influence of their parameters. Visualization allows to qualitatively explain
features in bioelectric fields, even if they are only indirectly detectable using
quantitative error measures. A myriad of visualization techniques is available,
all with their own benefits and drawbacks. The selection of the proper method
mainly depends on the specific application and the kind of features that
need to be explored. In addition, neuroscience and other life sciences have
very specific visualization requirements. Besides the three main requirements
postulated in this work (comparability, context, and interactivity), acceptance
of a method mainly depends upon its ability to reveal information and to al-
low its intuitive interpretation. We found that an interactive, intuitive, and
adapted tool is often more important than nice-looking images, created with
methods that require multiple parameters. The latter often lead to error-prone
methods, requiring a great deal of manual fine-tuning. Even if they provide

84 Chapter 5. Electric Fields from EEG and tDCS

subjectively impressive images, they do not necessarily transport the needed
information. Table 5.1 gives an overview on the general advantages and dis-
advantages of the methods used in this chapter. The actual value of a method
heavily depends on the domain and the features to investigate.

5.5.1 Future Work

Future directions of this type of application-specific visualization research
should involve experimental and clinical validation. In this context, other neu-
roscientific techniques and aspects of volume conduction might be interesting
to explore such as induced neuronal activity by transcranial magnetic stim-
ulation (TMS), reconstruction of current flow measured by intracranial EEG
(iEEG), and modeling the specific volume conductor properties, e.g., skull
modeling in children [107]. In general, we aim at more application-specific
techniques, including automated transfer function design and estimation of
parameters from the data. In our experience, a lot of parameters of the used
visualization techniques can be estimated automatically, rather than asking
the user for their exact value. This would provide the scientists with useful
defaults, but still allows fine-tuning the visualization.

5.5. Future Work and Conclusion 85

Pros Cons

Isosurfaces

• Insights into spatial distribu-
tion of scalar fields.
• Easy embedding of anatomical

context.

• Only shows a part of volumetric
structure (choose isovalue prop-
erly; consider meaning of “vol-
ume” and “distance” in render-
ings).
• Prone to noise and sampling ar-

tifacts.

Most useful in the context of selectively showing global features and behav-
ior.

Direct Volume Rendering (DVR)

• Insights into spatial structure
and distribution of scalar fields
in the entire volume.
• Avoids occlusion problems.

• Transfer function (TF) design
is very domain- and case-
specific.
• Anatomical context is hard to

embed.

Most useful in the context of catching multiple, global features in the entire
volume.

Streamlines

• Insights into directional struc-
tures at globally in 3D

• Occlusion problem (partially
solvable by transfer functions
and line filters).

Most useful in the context of grasping major directional structures in 3D.

Line Integral Convolution (LIC)

• Insight into directional struc-
tures locally (focus on details).
• Good qualitative comparison

among multiple images.

• Only depicts directional infor-
mation; quantification difficult.
• Combination with colormaps

can lead to misinterpretation.

Most useful in the context of analyzing local and small-scale directional
structures.

Table 5.1: Comparison of the general advantages and disadvantages of the shown
visualization methods.

Computer Graphics in
Visualization

In the last decade, a multitude of computer graphics methods were devel-
oped to improve plasticity and realism of computer generated images. These
methods aim at a physically accurate replication of the real world. Espe-
cially the computer game industry pushes the development of techniques
that achieve this ambitious goal phenomenologically.
Unfortunately, these developments attract only limited attention in visual-
ization. This might be due to the common notion of “A visualization is not
a computer game. There is no need for pretty looking images.” or simply
because most of these computer game methods cannot be applied to a typ-
ical visualization scene directly. Most of these methods rely on high-quality
triangle meshes, precalculated normal maps or simply handle transforma-
tional effect-coherency in a rather sloppy way; things that are different in
visualization. However, improved structural perception, improved spatiality,
and better visual detection of relations in the data are only some of the
advantages one gets when reasonably utilizing modern computer graphics in
visualization.
To achieve this, one has to adapt and re-invent computer graphics methods
towards the specific needs of visualization and the specific characteristics of a
given rendering/visualization method. In this part, three methods are shown,
which contribute to this rather sparsely investigated area of visualization and
provide tremendous perceptional improvements to existing and commonly
used visualization techniques. These improvements help domain scientists
to grasp local details as well as global structures and relations in their data,
which is crucial to understand complex, three-dimensional scientific data. Pa

rt
II

88 Chapter 5. Electric Fields from EEG and tDCS

89

6
Background

Visualization is a very complex process. It involves substantial processing to
extract information and features from a raw column of numbers, which is in-
comprehensible by the human brain. Regardless of the specific visualization
technique, it always begins with input data and it always ends with a graphical
representation – two cornerstones of visualization. The graphical representa-
tion serves as a transfer-medium between the data and the mental image of
the data in a viewer’s brain – and computer graphics is the driver. Hence, the
importance of computer graphics (CG) in visualization cannot be ranked high
enough.

In recent years, CG methods evolved that aim at a maximum of realism
and plasticity in computer generated images. This development was mainly
driven by the computer game industry, but found only limited attention in
visualization. Thereby, modern computer graphics methods can tremendously
improve the perception of space and structure in still images; something that
is a major demand in visualization.

In this part, I will introduce our work on computer graphics methods to
improve the visual quality, structural, and spatial perception in visualization.
To understand these techniques, it is crucial to have a basic understanding of
the modern graphics pipeline and the screen space rendering approach.

90 Chapter 6. Background

Figure 6.1: The OpenGL 4 rendering pipeline. The blue boxes denote the freely
programmable stages of the pipeline. The gray boxes are defined by the GPU. Con-
ceptionally, the pipeline can be split into two parts. The upper row shows the vertex
processing stages and the lower row the fragment processing stages. For the sake
of simplicity, the geometry shading stage and the tessellation unit were simplified
into “Mesh Refinement”. The final fragment is written to the output buffer, which
usually is associated with the screen.

6.1 The Modern Graphics Processor

The architecture and capabilities of graphics processors (GPU – graphics pro-
cessing unit) has changed tremendously over the last ten to fifteen years. The
fixed function pipeline has been loosened up in favor of more and more pro-
grammable stages in the rendering pipeline. In this thesis, I completely rely on
OpenGL. Hence, the following descriptions are centered about OpenGL and
its structure, but can be applied to other graphics interfaces as well.

6.1.1 The Graphics Pipeline

The OpenGL 4 pipeline is shown in Figure 6.1. The rendering software starts
with defining the different programs for the programmable stages. These pro-
grams are usually called “shaders”. The rendering software finally issues a
“draw call”, as OpenGL calls them. The geometry to render is associated with
the draw call. It consists of a list of vertices and a list of primitives, mapping
the vertices to the primitives. Additional attributes can be defined too. These
attributes are usually texture coordinates or normals, but can be of any type
and meaning.

Vertex Shader The first step on the GPU is to issue the vertex shader. As
the name implies, it processes each vertex of the input geometry. A core
concept behind the vertex shader is its strict locality and scope to the vertex
level. At this level, the shader has access to the data making up the vertex

6.1. The Modern Graphics Processor 91

it currently processes. It sees its current vertex only, it is not allowed to
access neighbouring vertices, and the vertex shader does not even know what
kind of primitive the vertex belongs to. Vertex shaders are used to apply
arbitrary transformations to the data and usually to finally project the vertex
to screen space. They also define the final texture coordinates of the vertex.
Texture coordinates are usually not transformed and are given by the rendering
software as additional attribute per vertex. They define which part of the
bound textures should be mapped to the surface of the primitive. Additionally,
these shaders are allowed to do calculations for the vertex and save the results
in variables that are, again, associated with the vertex.

Optional Mesh Refinement After the vertices were processed by the vertex
shader, the GPU allows to use the tessellation unit and the geometry shader.
Although both are different stages, they both allow to increase the amount of
vertices and primitives on the GPU with certain limitations. As these stages
are not needed in the following chapters, I skip them for the sake of simplicity.
For further details, please refer to the “OpenGL Red Book” [185].

Primitive Assembly After the vertex shader or the optional refinement stages
have finished and created the projected vertices, the GPU automatically re-
constructs the primitive from the stream of vertices and checks their visibility
against the camera setup (clipping). The GPU applies the perspective division
and transforms the primitives to the viewport coordinates.

Rasterization As all (partially) visible primitives now reside in the coordinate
system defined by the output buffer (usually the screen), the rasterizer can do
the scan conversion into fragments. These fragments relate to a pixel on the
output buffer, but are not yet known to be visible. They might be overwritten
by a primitive in front of the current one. This is the reason why they are
called fragments instead of pixels. The rasterizer also interpolates all variables
associated with the vertices on the rasterized surface. These variables can be
set by the vertex shader. This is the usual way to forward-communicate from
the vertex shader to the fragment shader.

At this point, the pipeline has left the vertex processing part of the pipeline.
The next steps are centered around the processing of the fragments created by
the rasterizer.

92 Chapter 6. Background

Fragment Shader The fragment shader is finally called for each generated
fragment. Similar to the vertex shader, it has to obey to the locality and
scope rules of the GPU. This means, the fragment shader has no read-access
to any of the vertices or mesh data. It cannot read information of neighbour-
ing fragments and is only allowed to write to its own location in the output
buffer. However, the fragment shader has global read-access to the textures
bound to the currently processed draw call. After the rasterizer created the
fragments, the GPU loads the bound textures into local memory of the frag-
ment shader. The GPU knows the exact part of the textures to load, since
the rasterizer interpolated the texture coordinates for the fragment already.
Fragment programs are usually used to define color and depth of a fragment.

Fragment Testing and Blending As the fragment shader has written the color
and other optional information, the GPU runs several tests on the fragment.
These tests define whether it is visible or not. Typically, this includes the
depth test. The depth of a fragment is compared to a depth buffer. If the
fragment is in front of the previous fragment, if any, it is written to the output
buffer and mixed with the previous color in the output buffer, if blending is
active. The depth of the new fragment is written to the depth buffer for later
comparison with other fragments at this specific pixel position.

Pipeline Summary Of course, the graphics pipeline is much more complex,
but the description given here is detailed enough to understand the following
chapters and the concepts of the modern graphics pipeline. I intentionally left
out several details, like compute shaders or the possibility to loosen up the
locality constraint, using OpenGL extensions to read/write locations other
than the shader’s own. These details are not needed here and would bloat up
the descriptions tremendously. The “OpenGL Red Book” [185] provides more
and detailed information if needed.

It is important to understand that the GPU allows to program different
stages of the rendering pipeline and that these programs work locally and
strictly scoped. A vertex shader is called for a specific vertex and only knows
about this vertex and the data associated with it. Similarly, the fragment
shader has no access to neighbouring fragments, nor is it allowed to write to
a different pixel location in the output buffer. The vertex shader can output
variables for a vertex, which are automatically interpolated between the ver-
tices making up the rasterized surface. The interpolated values are available
to the fragment shader.

6.1. The Modern Graphics Processor 93

Figure 6.2: The OpenGL coordinate spaces. The white boxes represent the coordi-
nate spaces and the blue and gray boxes represent the transformation steps. The blue
boxes show the programmable part of the transformation pipeline, as they are done by
the vertex shader or the geometry shader of the mesh refinement stage. Perspective
division and viewport transformation are a fixed function of the GPU. The term ND
space abbreviates the “normalized device coordinate space”.

6.1.2 Coordinate Spaces in OpenGL

To understand the screen space principle it is important to first understand
the different coordinate systems the OpenGL rendering pipeline operates in.
When using the Figure 6.1 as reference, all the transformations to the different
coordinate spaces happen in the upper row; the vertex processing part of the
pipeline. At this point, it is important to note that all vertex coordinates are
given as homogeneous vectors and contain a homogeneous coordinate w = 1.
All transformations up to the perspective division work with homogeneous
coordinates.

Object Space This is the initial coordinate system, where the vertex coor-
dinates reside in. We denote every vertex vector as

xobject

yobject

zobject

wobject

 . (6.1)

Eye Space When having a look at Figure 6.1 again, it is clear that the first
step after geometry upload is the vertex shader and the mesh refinement stage.
As mentioned above, we skip the mesh refinement here and focus on the vertex
shader. Its task is to output the clip coordinates of an object space input
vertex. This task involves transforming the object space vertex to eye space
first. In OpenGL, this is done by multiplying the vector with the ModelView

94 Chapter 6. Background

matrix, yielding the eye space coordinates. The ModelView matrix is given
by the rendering software and contains the transformations of the object to
render and the camera position, rotation and scaling (zoom). The eye space
coordinate is then defined as

xeye

yeye

zeye

weye

 = MModelV iew

xobject

yobject

zobject

wobject

 = MV iewMModel

xobject

yobject

zobject

wobject

 . (6.2)

OpenGL typically does not differentiate between model transformation and
view transformation. Other systems first transform the object space vector to
world space using MModel and from world space to eye space using the view
transform MV iew. Often, the terms “world space” and “eye space” are used
interchangeably.

Clip Space After the shader program has calculated the eye space coordi-
nates, it calculates the clip space coordinates and passes the result to the
GPU. The used matrix is the projection matrix. The rendering software de-
fines the orthographic or perspective viewing frustum and passes the matrix
to the GPU. The vertex shader now projects the eye space coordinate as

xclip

yclip

zclip

wclip

 = MProjection

xeye

yeye

zeye

weye

 . (6.3)

Each component of this vector is in the range [−wclip, wclip] if it is inside the
view frustum. That is the reason for calling them “clip coordinates”. OpenGL
uses them to decide whether a primitive can be removed from the processing
stream or not.

Normalized Device Space – ND Space After projecting the eye space vec-
tor, the vertex shader passes control over the vertex back to the GPU. The
GPU now performs perspective division. This transforms the homogeneous

6.1. The Modern Graphics Processor 95

coordinate back to Cartesian coordinates. This is called de-homogenization
and can be expressed by

xND

yND

zND

 =

xclip

wclip

yclip

wclip

zclip

wclip

 . (6.4)

The resulting vector defines a point in the normalized rendering area, thus all
components of the vector are in the interval [−1, 1]. The normalized rendering
area simply is the window where OpenGL renders to, but not yet scaled to pixel
coordinates. For example, xND = −1/xND = 1 refers to the left/right border,
yND = −1/yND = −1 to the bottom/top border, and zND = −1/zND = 1 to
the near and far clipping planes.

Window Space Finally, the normalized coordinates can be transformed to
pixel coordinates with respect to the current rendering area. OpenGL calls
the rendering area “viewport”. It is defined by the origin in pixels (vx, vy), a
width vwidth and a height vheight. The zND-component represents the depth of
a pixel and can be stored in the depth buffer. The range of the buffer is [0, 1],
where 0 is the nearest depth and 1 represents the furthest point. Accordingly,
the z-component needs to be translated to this range too. OpenGL allows to
define the range as f for the far value and n for the nearest. The final pixel
coordinate can then be written as

xwindow

ywindow

zwindow

 =

vw

2 xND + (vx + vw

2)
vw

2 yND + (vy + vh

2)
f−n

2 zND + f+n
2

 . (6.5)

So basically, this is a scaling to the size of the viewport and offsetting it by
the origin. This is also true for the depth buffer value zwindow.

The GPU now rasterizes the primitive by using the window coordinates
and the resulting fragments can be processed by the fragment shader. After
processing, the GPU can use zwindow to test whether the fragment is in front
or behind a previously rendered pixel at this window coordinate.

Coordinate System Summary Knowing the OpenGL spaces and the general
rendering pipeline, one has a solid understanding of how OpenGL renders ge-
ometry to the output buffer and how the modern pipeline allows to customize
the rendering process on the GPU. The coordinate space in OpenGL can be

96 Chapter 6. Background

transformed in both directions using the provided matrices or their inverses re-
spectively. The whole transformation pipeline up to clip space is programmable
by the vertex shader and uses homogeneous coordinates. De-homogenization
and scaling to the actual pixels on screen is done by the GPU.

6.2 Screen Space Rendering

Using the above knowledge, this section finally describes the scheme of a whole
class of rendering approaches: the screen space techniques. Often, this class
of technique is called “image space technique”. Both terms are equivalent.

In general, screen space methods stand out as they postprocess three-
dimensional scenes in two dimensions. They can be understood as advanced
image filters, applied after the original rendering has been done. This is the
reason why this class of approaches is usually referred to as “image space” or
“screen space”.

6.2.1 Concept

Original Render Pass Each screen space approach works as a multi-pass ap-
proach. Multi-pass means that the method needs multiple rendering cycles
(cf. Section 6.1) to create the final image. Screen space methods usually begin
by rendering some arbitrary geometry. A typical example would be an isosur-
face rendering or a glyph ray-tracer [76]. It does not matter how the method
works, but instead of rendering the scene to the screen, it is rendered to an
invisible buffer for later use. Typically, this is a texture with the same size as
the screen. This first rendering pass yields the color output and the depth of
each pixel on screen.

Screen Space Render Pass The rendering software now sends another draw
call to the GPU (cf. Section 6.1). Instead of rendering the geometry again, it

• renders a quad at the size of the screen,

• attaches the original output texture to the quad,

• spans the texture to the whole quad, and

• sets a fragment shader.

When reviewing the rendering pipeline and the coordinate spaces again, it gets
clear that this way, each texture-pixel (often called “texel”) is mapped to its

6.2. Screen Space Rendering 97

original pixel on screen. Even more important is the fact that the rasterizer
generates fragments that exactly match the mapped texture pixels. These
texels are the pixels of the original rendering. This means that the generated
fragments exactly match the original pixels on screen, if the rendering would
have been done to screen in the first place.

This procedure yields several major advantages:

1. Avoiding fragment locality: The fragment shader has access to the whole
original result texture. This way, a fragment shader can read neighbour-
ing information, which was not possible during the original rendering
pass.

2. Processing visible pixels only: Complexity of screen space approaches is
decoupled from data complexity. It only depends on screen resolution
and pixel coverage.

3. Cascading render passes: the screen space render passes can output their
results to a screen-size texture again. This means, it is possible to cas-
cade multiple offscreen render passes that create different output textures
that, in turn, can be used by other screen space passes again.

4. No changes to the original rendering method: The rerouting of outputs
can be done using the rendering system only. The original method can be
left untouched. This makes it easy to add further processing to arbitrary,
already existing methods. No matter how they work, even if they are
screen space or multi-pass approaches for themselves.

The last screen space render pass can now render to screen again, instead of a
texture. It also writes the original depth values to the depth buffer and thus
seamlessly merges with the complete scene.

Data Transfer As indicated above, the transfer of information between the
different render passes is done using screen-size textures. The original render
pass provides the standard color output as texture and its depth buffer. But
usually this is not enough. One requires more information. Maybe the normals
on the original surface, tangents or visualized data on the surface, like vectors,
tensors, or scalar field information. Unfortunately, this requires a change in the
fragment shader of the original rendering method, but is usually not critical
or overwhelmingly complex.

As a fragment shader is not limited to writing to one output buffer only,
it is possible to attach more output textures at once. This is called “multiple

98 Chapter 6. Background

render targets” in the jargon of OpenGL. It is possible to use single-precision,
floating point textures as render target too. This provides a lot of flexibility to
transfer additional data to consecutive steps, especially in scientific computing.
The fragment shader can write at its specific position to the output textures.
This limitation still holds due to its scope and locality limitation.

An important point when transferring vectorial data is to transform it to
the right coordinate space before writing it to the output texture. Normals, for
example, reside in object space. To use them in the screen space approach, it
has to be transformed to screen space too. The question is, which coordinate
space is meant here. For vectorial data whose length is not of importance
(like normals), this is the clip space – the coordinate space after applying the
projection matrix. When perspective scaling is needed, then the Cartesian ND
space is used.

In homogeneous projective geometry, vectors can be seen as points on the
infinitively far away plane. This means, their homogeneous coordinate is 0.
This can be interpreted in another way: vectors are invariant on translation.
In GPU programming, this is often used to differentiate points (like vertices)
from vectors (like normals). The transformation of vectors to clip or ND space
was already introduces in Section 6.1.2.

Pixels and the Texture Space This basically is a matter of terminology. As
described, the texture has the same size and resolution as the screen. The tex-
ture space is required for resolution-independent access to textures in a shader
program. For a two-dimensional texture, the lower-left corner of the texture
is at (0, 0) in texture space. The upper-right is at (1, 1). To access a certain
pixel P with coordinates (Px, Py) in texture space, one has to scale P by the
resolution of the texture, yielding the texture space coordinate (Px

vw−vx
, Py

vh−vy
),

with v being defined by the viewport as shown in Equation (6.5).
In the remaining work, we always refer to pixels. We do the scaling to

texture space when reading the texture. This is not stated explicitly all the
time.

Implementation In OpenGL and other rendering systems, multi-pass ap-
proaches like these are usually done by using so-called “framebuffer objects”,
or FBO for short. Their purpose is to redirect the rendering output of a draw
call to texture on the GPU. Once activated, everything written by the frag-
ment shader of a draw call is written to a texture, which can be reused by
another draw call.

6.2. Screen Space Rendering 99

Everything else is trivial on the practical side and works exactly as de-
scribed above. The only limitation to consider is the amount of texture memory
and whether single-precision floating point output is required or 8-bit output
is sufficient.

Concept Summary Screen space approaches render the original scene to a
texture instead of the screen buffer. The texture is used by another render
pass to do further processing via a fragment shader. The fragment shader in
screen space has read-access to neighbouring pixels in the provided textures.
Each render cycle can output multiple textures and can be cascaded. Textures
in general are used to transfer data, but one has to take care of the coordinate
space in which transferred vectorial data resides in.

6.2.2 Things to Consider and Potential Pitfalls

There are several limitations and potential pitfalls to be aware of when using
screen space rendering. This section provides a short overview on them.

Sub- and Super-Sampling Depending on the scaling of the scene and the
point of view, data provided in object space might be sub-sampled or super-
sampled during rendering. Figuratively speaking, this is caused when per-
vertex data needs to be interpolated. This is the case whenever the rasterized
primitive is larger than the pixels representing the vertices. Or, the other
way around, when data is lost due to several vertices being mapped to one
pixel. This has an influence on the maximum frequency in the data that can
be displayed and might pose a challenge to the used interpolation of multi-
variate data like tensors. Depending on the specific screen space approach and
displayed data, this needs to be considered.

Storage and Calculation Precision The calculations done in shader pro-
grams are carried out in half-precision mode. It is possible to activate single-
or double-precision mode in shaders, but this usually yields a performance
penalty. A similar problem exists for data transfer via textures. Usually, a
color channel of a texture is eight bit wide. Modern GPU support half- and
single-precision floating point textures at the cost of texture memory and au-
tomatic interpolation being disabled for these kind of textures. So one has to
trade-off numerical precision versus memory and speed.

100 Chapter 6. Background

Locality and Memory Access The GPU works as SIMD machine. This
means, it processes Multiple Data using a Single Instruction synchronized
over multiple processing units (PU). Additionally, these groups of PU have
their own local memory and can access the global, shared memory. The local
memory is small but fast. Accessing it is possible with a very low latency. In
contrast, the global memory, accessible by all groups, imposes a high latency
on access, due to the type of memory and the shared bus.

The local memory is sufficient to hold the geometry and texture data that
is probably needed by the current group of shaders. This holds true as long as
the shader reads only local data. In terms of textures, local data refers to the
texel assigned to a fragment via texture mapping.

As already mentioned, a fragment shader has read access to the whole
textures bound to the current draw call. When a fragment shader reads a
texel, which is not cached in the local memory, it causes a cache miss. The
GPU then reads from global memory. This will take some time, since the
memory is shared and connected via a shared bus. So, the memory fetch
instruction of a single PU can cause long wait cycles in a whole group, simply
because their instruction flow is synchronized (SIMD idea). In later chapters,
we will show that this is an issue for the methods we introduce. In general,
this is one of the typical reasons for sudden frame rate drops.

For more details on the GPU architecture, please refer to “Programming
Massively Parallel Processors: A Hands-on Approach” by Kirk and Hwu [93].

Branching As mentioned above, the GPU works according to the SIMD prin-
ciple. This means multiple process units (PU) in a group synchronously process
a single instruction after the other on multiple fragments (multiple data). If a
shader program now contains an if-statement and branches the flow according
to it, all PUs whose if-condition failed, have to wait until the other PUs have
processed their if-block. This causes tremendous amounts of idle PUs, yielding
a severe performance penalty. This is especially true, if the if-block tend to be
long or runtime intensive.

Although modern GPU get faster and even implement branch-prediction
techniques known in CPU architectures, branching is still a point to keep in
mind. Especially in screen space approaches with data dependent branching,
it sometimes is better to do a calculation for all fragments and discarding the
result later on to avoid idling PUs.

6.3. Summary and Outlook 101

6.3 Summary and Outlook

This chapter provided an overview on the modern GPU and rendering pipeline.
It introduced the different coordinate spaces that will play a role in the next
chapters and described the general screen space scheme at a glance.

The next three chapters will use these principles in three concrete screen
space methods. They improve the structural and spatial perception in different
kinds of visualization and contribute to the field of applied computer graphics
in visualization.

102 Chapter 6. Background

103

7
Improved Structure Perception in

a Fabric-like Visualization of
Tensor Fields

This chapter is based on the following publications:

[P7] – S. EICHELBAUM, M. HLAWITSCHKA, B.
HAMANN, and G. SCHEUERMANN. Fabric-like Visual-
ization of Tensor Field Data on Arbitrary Surfaces in
Image Space. New Developments in the Visualization and
Processing of Tensor Fields. Ed. by D. H. Laidlaw and A.
Vilanova. Mathematics and Visualization. 2012, 71–92
Online: http://sebastian-eichelbaum.de/pub10a

[P8] – S. EICHELBAUM, M. HLAWITSCHKA, B.
HAMANN, and G. SCHEUERMANN. Image-space Ten-
sor Field Visualization Using a LIC-like Method. Visu-
alization in Medicine and Life Sciences 2. Ed. by L. Linsen,
B. Hamann, H. Hagen, and H.-C. Hege. Mathematics and
Visualization. 2012, 193–210
Online: http://sebastian-eichelbaum.de/pub10b

http://sebastian-eichelbaum.de/pub10a
http://sebastian-eichelbaum.de/pub10b

104 Chapter 7. Improved TensorMesh

7.1 Overview

The Data: Symmetric Second-Order Tensors Tensors are of great interest
to many applications in engineering, mechanics, optics, electromagnetism, and
medical imaging. They describe the behaviour of several physical effects like
material stress, field strength or diffusion in organic tissues.

As this chapter is about computer graphics and the improvement of an ex-
isting visualization method for second-order tensor fields, the following para-
graphs will provide a rather short background on tensors and second-order
tensors in particular. A profound introduction of this mathematical construct
and its calculus can be found in Tensor Analysis and Nonlinear Tensor Func-
tions [44]. Alternatively, the work by Hagen and Garth [67] provides the
necessary fundamentals.

For our purposes, it is sufficient to understand a tensor as a basis-independent
geometric object. One of the common definitions of a tensor is using multilin-
ear maps. Multilinear maps can be seen as a function that depends on multiple
variables and that is linear with respect to each variable separately.

Definition 7.1 (Tensor as Multilinear Map) Given a vector space
V and its dual space V ∗, a (r, s) tensor can be written as a multilinear
map

T : V × · · · × V︸ ︷︷ ︸
r times

×V ∗ × · · · × V ∗︸ ︷︷ ︸
s times

→ R.

The order of a tensor is defined as r + s, and its dimension is defined
by the used vector space.

The dual vector space V ∗ has the same dimension as V and can be seen as
the set of all linear forms on V , whereas linear forms are linear maps (functions
that obey to additivity and degree 1 homogenity) from V to R.

Definition 7.2 (Secod Order Tensor) Using the notion of the order
of a tensor, one can now define second-order tensors as tensors, where
2 = r + s; namely (2, 0), (0, 2), and (1, 1) tensors.

As we work in a Cartesian coordinate system, we can re-formulate the
above definitions, because the difference between V and V ∗ vanishes.

7.1. Overview 105

Definition 7.3 (Second-Order Tensor as Matrix) In Cartesian
space of dimension n, a second-order tensor can be written as a n × n
matrix Tij.

Definition 7.4 (Symmetric Second-Order Tensor as Matrix) A
second-order tensor Tij is called symmetric if and only if T = T T .

This allows us to understand the second-order tensor as a linear transfor-
mation from a Cartesian space to itself. With the above definitions, we are
now able to define the second-order tensor field. It represents the association
of a linear transformation for each point in the field.

Definition 7.5 (Second-Order Tensor Field) Let S ⊆ Rn be a sub-
set in Cartesian space of dimension n and T 2 the set of all second-order
tensors with the same dimension in Cartesian space. Then, the mapping

f : S → T 2

is called second-order tensor field of dimension n.

According to the above definitions, we can apply all rules and properties
of quadratic matrices to second-order tensors too. This being said, the n− th
dimensional symmetric second-order tensor can be represented by

T = R

λ1 0 · · · 0
0 λ2 · · · 0
...
0 0 · · · λn

R
T , (7.1)

where λ1 . . . λn are called eigenvalues. As convention the eigenvalues are sorted:
λ1 ≥ λ2 ≥ . . . ≥ λn. As we work in a Cartesian system, the rotation matrix R
is column-wise defined by the n eigenvectors. For a more detailed introduction
and theoretical background on tensors, we refer the reader to the literature [44,
67].

For our purpose, it is important to understand the meaning of the eigen-
vectors and eigenvalues of the given tensorial data. In many application areas,

106 Chapter 7. Improved TensorMesh

the eigenvectors and eigenvalues describe a physical property, which is aimed
to be visualized. For diffusion MRI, the eigenvectors and values describe wa-
ter diffusion direction and intensity; for mechanical application they describe
a physical deformation direction and intensity at each point; in electromag-
netism, it can describe the electrical field. The tensor is a very flexible and
widely used concept in many scientific fields and its visualization is crucial to
understand the underlying data.

From a visualization point of view, second-order tensor fields are usually
seen as a lattice in space with associated tensors at each vertex of the lattice.
The multivariate nature of tensors make them especially challenging to visual-
ize. The next paragraphs show an excerpt of possible tensor field visualization
methods.

Visualization of Symmetric Second-Order Tensor Data Since the introduc-
tion of tensor lines and hyper streamlines [41], there have been many research
efforts directed at the continuous representation of tensor fields, including re-
search on tensor field topology [74, 202, 204]. Zheng and Pang introduced
HyperLIC [235], which makes it possible to display a single eigendirection of a
tensor field in a continuous manner by smoothing a noise texture along integral
lines, while neglecting secondary directions. Recent approaches by Hlawatsch
et al. [75] and Hlawitschka et al. [77] to visualize Lagrangian structures on
tensor fields provide information on one chosen tensor direction and are es-
pecially useful for diffusion tensor data, where the main tensor direction can
be correlated to neural fibers or muscular structures, whereas the secondary
direction only plays a minor role. In 2009, an interactive approach to visualize
a volumetric tensor field for implant planning was introduced by Dick et al.
[43]. In 2009, Zhang et al. [233] showed the use of evenly spaced tensor lines
on surfaces to represent the eigenvector structure.

Hotz et al. [83] introduced Physically Based Methods (PBM) for tensor
field visualization in 2004 as a means to visualize stress and strain tensors
arising in geomechanics. A positive-definite metric that has the same topo-
logical structure as the tensor field is defined and visualized using a texture-
based approach resembling LIC [28]. Besides other information, eigenvalues
of the metric can be encoded by free parameters of the texture definition,
such as the remaining color space. Whereas the method’s implementation for
parameterizable surfaces that are topologically equivalent to discs or spheres
is straightforward, implementations for arbitrary surfaces remains computa-

7.1. Overview 107

tionally challenging. In 2009, Hotz et al. [84] enhanced their approach to
isosurfaces in three-dimensional tensor fields. A three-dimensional noise tex-
ture is computed in the dataset and a convolution is performed along integral
lines tangential to the eigenvector field. LIC has been used in vector field
visualization methods to imitate Schlieren patterns on surfaces that are gener-
ated in experiments, where a thin film of oil is applied to surfaces, which show
patterns caused by the air flow. In vector field visualization, screen space
LIC is a method to compute Schlieren-like textures in screen space [62, 104,
221, 222], intended for large and non-parameterized geometries. Besides the
non-trivial application of screen space LIC to tensor data, screen space LIC
has certain other drawbacks. Mainly because the noise pattern is defined in
screen space, it does not follow the movement of the surface and, therefore,
during user interaction, the three-dimensional impression is lost. A simple
method proposed to circumvent this problem is animating the texture pattern
by applying randomized trigonometric functions to the input noise. Weiskopf
and Ertl [218] solved this problem for vector field visualization by generating
a three-dimensional texture that is scaled appropriately in physical space.

In contrast to other real-time tensor field visualizations like [232], we devel-
oped and implemented an algorithm similar to the original PBM but for arbi-
trary non-intersecting surfaces in screen space. We call this method “Tensor-
Mesh” and it was first published in my diploma thesis [48] (Online: http:
//www.sebastian-eichelbaum.de/pub09). It is explicitly not a part of this
thesis. Instead, this chapter focuses on the extensions of the original approach
and its visual improvement by postprocessing the resulting images. Tensor-
Mesh was able to create a mesh-like structure on arbitrary surfaces that rep-
resents the underlying tensor structure. The algorithm was able to perform at
interactive frame rates for large datasets. We have overcome the drawbacks
present in several screen space LIC implementations by defining a fixed param-
eterization on the surface. Thus, we did not require a three-dimensional noise
texture representation defined at sub-voxel resolution for the dataset. Our
approach was capable of maintaining local coherence of the texture pattern
between frames when (1) transforming, rotating, or scaling the visualization,
(2) changing the surface by, e.g., changing isovalues or sweeping the surface
through space, and (3) changing the level of detail. In addition, we imple-
mented special application-dependent modes to ensure our method integrates
well with existing techniques.

http://www.sebastian-eichelbaum.de/pub09
http://www.sebastian-eichelbaum.de/pub09

108 Chapter 7. Improved TensorMesh

(a) Original TensorMesh

(b) Improved TensorMesh

Figure 7.1: Comparison of the original TensorMesh with our improved version.
(b) shows the same rendering as above, with a more crisp mesh and a higher mesh
resolution. Using our computer graphics methods, we were able to improve the visual
quality and the structural perception of the original method tremendously.

7.2. Background 109

The Problem As the TensorMesh technique visualizes the tensorial data as
mesh structure on surfaces, the structural perception of these meshes is crucial
to understand the tensor data. Unfortunately, the resulting images were rather
blurry and were not optimized towards structural perception.

Our Solution: Shape from Shading The importance of proper shading on
the perception of shape and structure has been shown in the past by Ra-
machandran [155], Langer and Bülthoff [103], and Wanger et al. [215]. In
this chapter we use the principle “Shape from Shading” [155] and show that
computer graphics allows to improve the perception of data in visualization
tremendously.

To improve the structural perception in the TensorMesh approach, we pro-
vide two different screen space postprocessings. One that uses an adapted
version of the well known bump mapping approach and a streamtube recon-
struction that creates a tubular effect for each strand on the surface. Both
postprocessings work in real-time and improve the contrast of the mesh to
create crisp and clean mesh structures. This way, we are able to provide a
hugely improved structural perception of the underlying tensor mesh.

The next section, will introduce the working principle of the original Tensor-
Mesh approach. We will then go on extending this method, by adding a post-
processing step. We explain our modified bump mapping approach and how
we achieve tube-like rendering of the TensorMesh. The chapter closes with
several visualizations of second-order tensor data and a detailed discussion.

7.2 Background

In this chapter, we enhance a technique we call TensorMesh. I introduced it
in my diploma thesis [48] and as such, it is not part of this thesis. I introduce
the basic working principles here and would like to refer the reader to the
publications [P7, P8] for further details.

The TensorMesh technique itself is a screen space method and this section
explains its basic working principle, which is also depicted in Figure 7.2. There
is only one preliminary step needed on the CPU before running TensorMesh
on GPU: the initial noise texture.

Noise Texture Generation Before third requirement of the projection step is a
two-dimensional noise texture. In contrast to standard LIC approaches, high-
frequency noise textures, such as white noise, are not suitable for the composit-

110 Chapter 7. Improved TensorMesh

Figure 7.2: Flowchart indicating the four major steps (blue boxes) of the algorithm:
Projection, which transforms the dataset into a screen space representation and
maps the noise texture onto the surface of the rendered geometry; Silhouette De-
tection uses the depth buffer to reconstruct the visible object borders; Advection,
now uses the two projected major eigenvectors to advect the projected noise along the
eigenvector fields until it reaches a geometry edge; finally, the Compositing step
combines both advected noise textures, adds original coloring, and outputs the result
to the screen.

ing of multiple, advected textures. Their high-frequency details would not cre-
ate the mesh-like result as intended with TensorMesh. Therefore, we compute
the initial noise texture using the reaction diffusion scheme first introduced
by Turing [205]. It simulates the mixture of two reacting chemicals, which
leads to larger, but smooth “spots” that are randomly and almost uniquely
distributed (cf. Figure 7.3, right). This can be precomputed on the CPU
once. The created texture can then be used for all consecutive frames. For the
discrete case, we define three discrete, two-dimensional images ai,j, bi,j, and
βi,j. Each pixel can be accessed by the indexing parameters i and j. The field
β gets initialized with white noise, whereas a and b are initialized with 0.5 for
each i, j. This can be seen as the initial concentration of the two chemicals.
The iterative change of each value in a and b for a single iteration is defined
as

∆ai,j = F (i, j) +Da · (ai+1,j + ai−1,j + ai,j+1 + ai,j−1 − 4 · ai,j),

∆bi,j = G(i, j) +Db · (bi+1,j + bi−1,j + bi,j+1 + bi,j−1 − 4 · bi,j),where

F (i, j) = s(16− ai,j · bi,j) and G(i, j) = s(ai,j · bi,j − bi,j − βi,j).

(7.2)

Here, we assume continuous boundary conditions to obtain a seamless texture
in both directions. The scalar s allows one to control the size of the spots,
where a smaller value of s leads to larger spots. The constants Da and Db are
the diffusion constants of each chemical. We use Da = 0.125 and Db = 0.031

7.2. Background 111

to create the input textures. We gained both constants empirically. They
directly influence the shape and density of the created spots.

Both images a and b converge, depending on the used parameters, relatively
fast. TensorMesh then takes image a and uses it as input for the projection
step. Figure 7.3(a) shows such a generated and tiled input texture.

7.2.1 Step 1: Projection to Screen Space

As with every screen space method, the TensorMesh method starts by render-
ing the arbitrary geometry. The geometry additionally contains the second-
order tensor associated with each vertex of the geometry. In practice, this can
be done by storing the six needed components of the symmetric 3× 3-matrix
as two three-dimensional texture coordinates, as generic vertex attributes, or
as three-dimensional textures (cf. Section 6.1). When rendering the scene, the
method uses a vertex/fragment shader pair for processing the geometry and
each possible pixel (fragment). The results get written to four output textures:

• Light and Color: the standard geometry color and lighting, as if the
geometry would be rendered to screen without any further processing.
This is provided by the GPU automatically.

• Eigen-map: the two major eigenvectors, projected to the geometry sur-
face.

• Noise-map: the noise used during advection along the eigenvectors. This
noise was projected to the surface of the geometry too.

• Depth buffer: finally, the standard depth buffer of the scene. This is
provided by the GPU automatically.

The next paragraphs summarize the creation of the eigen-map and the noise-
map.

The Eigen-map At this point, the vertex shader has access to the tensor and
the geometry normal of the currently processed vertex. Using this, it can
project the tensor to the surface of the geometry as

T ′ = P · T · P T , (7.3)

112 Chapter 7. Improved TensorMesh

with a matrix P defined using the surface normal n as

P =

1− n2

x −nynx −nznx
−nxny 1− n2

y −nzny
−nxnz −nynz 1− n2

z

 . (7.4)

The surface-projected tensor T ′ is now stored in a per-vertex variable. Per-
vertex variables are interpolated by the GPU during rasterization. The in-
terpolated value will be available during each run of the fragment shader.
The component-wise interpolated tensor is then decomposed into the eigenvec-
tor/eigenvalue representation using a method derived from the one presented
by Hasan et al. [71], only using iteration-free math functions. This causes a
tremendous acceleration on the GPU. With this method, we calculate the three
real-valued, orthogonal eigenvectors vλ1−3 and the corresponding eigenvalues
λ1 ≥ λ2 ≥ λ3. In our method, we are only using the first two eigenvectors,
showing the two main directions. The eigenvectors, still defined in object space,
are projected into screen space using the same projection matrices MModelV iew

and MProjection used for projecting the geometry to screen space (cf. Sec-
tion 6.1.2). These usually are the standard modelview and projection matrices
OpenGL offers:

v′λi
= MProjection ×MModelV iew × vλi

, with i ∈ {1, 2}. (7.5)

After the projection, the two major eigenvectors can be stored in the corre-
sponding pixel of the eigen-map.

The Noise-map Mapping the initial texture to the geometry can be a difficult
task. Even though there exist methods to parameterize a surface, they em-
ploy restrictions to the surface (such as being isomorphic to discs or spheres),
require additional storage for texture atlases (cf. [87, 154]) and, in general,
require additional and often time-consuming preprocessing. Another solution,
proposed by Turk [206], calculates the reaction diffusion texture directly on
the surface. A major disadvantage of this method is the computational com-
plexity. Even though these approaches provide almost distortion-free texture
representations, isosurfaces, for example, may consist of a large amount of
unstructured primitives, which increases the preprocessing time tremendously.

For our purpose, a simple, yet fast and flexible mapping strategy is used.
Informally spoken, we classify each surface point P of the geometry to belong

7.2. Background 113

(a) Turing noise (b) Mapped to geometry

Figure 7.3: Illustration of the reaction diffusion texture used (left) and the noise
texture mapped to geometry (right). For a higher resolution in the projection step,
we tiled the noise texture multiple times. The appearing repetition artifacts do not
play any role after projection.

to one certain voxel of a virtually defined 3D grid. This can be interpreted as
discretization of the surface with the help of the implicit voxels. The normal
at P on the surface is then used to find the most similar side of the voxel asso-
ciated with P . Once the side-plane is found, the point’s P texture coordinates
can be determined by:

Side-normal Texture coordinates
(1, 0, 0) or (−1, 0, 0) (py, pz)
(0, 1, 0) or (0,−1, 0) (px, pz)
(0, 0, 1) or (0, 0,−1) (px, py)

Please note that we assume the texture coordinates to be defined in a wrapped
and continuously defined coordinate system, which is common in OpenGL.
This allows the seamless tiling of the input noise texture on each voxel surface,
which then is mapped to the surface. This can be interpreted as an ortho-
graphic projection of the voxel side plane onto the surface along the plane’s
normal vector. By changing the size of voxels during the calculation, different
frequencies of patterns can easily be produced and projected onto the geom-
etry. This capability allows one to change the resolution of the texture as
required for automatic texture refinement when zooming. In practice, this can
be done in the fragment shader easily. It automatically is called for every visi-
ble surface point P and can now use the object space normal of P to calculate
the texture coordinate:

114 Chapter 7. Improved TensorMesh

Listing 7.1: Map the input vertex coordinate to a texture coordinate in the 2D
noise texture.

1 float noise(vec3 P, // surface point in object space
2 vec3 normal // P’s normal in object space
3) // return the noise value for P
4 {
5 // Allow scaling the virtual voxel space. The variable
6 // bbSize contains the maximum dimension of the
7 // geometry bounding box. This normalizes P to a
8 // texture space interval of of [0 ,1]. This represents
9 // one virtual voxel per bounding box. nbVoxels then

10 // allows to increase this.
11 pScaled = (P * nbVoxels) / bbSize ;
12

13 // The default case if the normal points exactly
14 // towards the voxel corners .
15 vec2 noiseTexCoords = vec2(pScaled .x, pScaled .y);
16

17 // Find the side of the virtual voxel to which
18 // the object space normal of P points to.
19 if(abs(normal .x) >= max(abs(normal .y),
20 abs(normal .z))
21)
22 {
23 noiseTexCoords = vec2(pScaled .y, pScaled .z);
24 }
25 else if(abs(normal .y) >= max(abs(normal .x),
26 abs(normal .z))
27)
28 {
29 noiseTexCoords = vec2(pScaled .x, pScaled .z);
30 }
31 else if(abs(normal .z) >= max(abs(normal .x),
32 abs(normal .y))
33)
34 {
35 noiseTexCoords = vec2(pScaled .x, pScaled .y);
36 }
37

38 // Get the value from the input noise texture ,
39 // represented by noiseTexture .
40 return texture2D (noiseTexture , noiseTexCoords).r;
41 }

Regardless of its simplicity, this method supports a fast and flexible param-
eterization of the surface space that only introduces irrelevant distortions (cf.
Figure 7.3), which vanish during the advection step. Additionally it creates a

7.2. Background 115

consistent visual impression of the noise on the surface when interacting with
the scene. Figure 7.3(b) shows the noise mapped on an arbitrary geometry.

7.2.2 Step 2: Silhouette Detection

With the eigen- and noise-map, the advection step could now follow the stream-
lines on the eigen-map images. To avoid advecting over geometry borders, we
require the geometry edges first. These edges are calculated in the silhouette
detection step. We use the depth buffer of the geometry and apply a Laplace
filter on it. As this second step already works in screen space, this is done for
each pixel of the input depth buffer in a single fragment shader. The result is
written to an output texture for later use.

Although the Laplace filter could be applied on demand during the next
step, we precalculate these edges. This is useful as the same pixel might
be visited multiple times during the advection step, causing the edge to be
calculated multiple times. A counter-argument to precalculation would be
to assume that a large fraction of the pixels do not belong to the rendered
surface, hence making edge detection on these pixels superfluous. In this case,
the precalculation might be skipped. However, the definition of large fraction
is difficult and a gain in performance also depends on the actual vector fields
and the length of integration in the next step.

7.2.3 Step 3: Advection

We have discussed how to project the geometry and the corresponding tensor
field to screen space. With the prepared screen space eigenvectors and the
input noise texture on the geometry, the advection can be done for both of the
eigenvector fields.

The advection step is conceptually very similar to the line integral convolu-
tion (LIC) approach, but in our case, we do not calculate streamlines at each
position of both vector fields. As a fragment shader has no write-access to
other pixels, it is not able to convolute the noise along the streamlines. That
is the reason why we use Euler integration to follow the vector field from the
current pixel in both directions and combine the noise value from each vector
field sample using a weighted sum. This way, we write only to the originating
pixel and achieve a visually similar result. The length of the vector, used for
each step during integration, is one pixel to ensure that no detail is missed.

116 Chapter 7. Improved TensorMesh

Listing 7.2: Advection of the noise texture acording to the given input eigen-
vector field. This GLSL-like pseudo code demonstrates the advection at a given
pixel P in a fragment shader.

1 float advect (vec2 P, // the pixel
2 int fieldIndex , // vector field to use
3 int numIterations // number of iterations
4) // return advected noise
5 {
6 // Iterate along the field , in both directions .
7 vec2 lastPos1 = P; vec2 lastPos2 = P;
8 // Keep track if an edge was crossed
9 bool isOutside1 = false ; bool isOutside2 = false ;

10 // How much iterations have contributed ?
11 int numContributions = 0;
12

13 // Iterate
14 float sum = 0.0;
15 for(int i = 0; i < numIterations ; ++i)
16 {
17 // Calculate new positions , in forward and backward
18 // directions . In the case of Euler integration and
19 // a step size of 1, those functions can be written
20 // as lastPos1 + getVector (fieldIndex , lastPos);
21 vec2 newPos1 = getNextPos (fieldIndex , lastPos1);
22 vec2 newPos2 = getPrevPos (fieldIndex , lastPos2);
23

24 // Get the edge information from step 2. 1 if the
25 // pixel is an edge or outside , 0 otherwise .
26 isOutside1 = isOutside1 || isEdge (newPos1);
27 isOutside2 = isOutside2 || isEdge (newPos2);
28

29 // Let the sample ’s noise contribute . We found that
30 // an unweighted contribution yields the best
31 // results . It is also possible to scale using a
32 // geometric progression , distance dependent , ...
33 // Note: only contribute if the positions did not
34 // cross an edge.
35 sum += float (! isOutside1) * getNoise (newPos1);
36 sum += float (! isOutside2) * getNoise (newPos2);
37

38 // Keep track
39 lastPos1 = newPos1 ;
40 lastPos2 = newPos2 ;
41 numContributions += int (! isOutside2) +
42 int (! isOutside1);
43 }
44

45 // The sum needs to be scaled to [0 ,1] again.
46 return = sum / numContributions ;
47 }

7.2. Background 117

(a) Advection along v′
λ1

(b) Advection along v′
λ2

Figure 7.4: Advection texture after ten integration steps. Left: red channel con-
taining advected noise along the eigenvectors v′λ1

; Right: green channel containing
the advected noise along the second eigenvectors v′λ2

.

Integration is stopped in two cases:

1. when reaching a given maximum integration length,

2. or when an edge is reached (cf. Edges-texture in Figure 7.2).

We also considered using other, higher order streamline integration schemes,
but the view-dependent super- and sub-sampling during projection to screen
space voids the advantages over the Euler method. The GLSL-like pseudo
code in Listing 7.2 shows the basic idea, as done for each pixel P in this step’s
fragment shader.

In our originally published articles [P7, P8], we used the so-called ping-
pong approach for advection. There, we advected the incoming noise texture
only along one step of the vector fields. The resulting texture was then used
as input for another advection render pass, which renders another single-step
advection to a different output texture. This new texture is then used as input
for the next advection step, whereas the old input is used as the output, hence
the name “ping pong”. This was faster on older GPU architectures, but is
obsolete today due to the increased local shader unit memory and shader unit
processing power.

The result of the advection step with ten integration steps is shown in
Figure 7.4. For later reference, we call the advected images Aλ1 and Aλ2 .

118 Chapter 7. Improved TensorMesh

7.2.4 Step 4: Compositing

In a subsequent rendering pass, a fabric-like texture is composed. The com-
positing step combines the advection results for Aλ1 and Aλ2 into one image
as RGB triple:

R = r · Aλ2

8 · (Aλ1)2 ,

G = (1− r) · Aλ1

8 · (Aλ2)2 ,

B = 0.

(7.6)

Equation (7.6) is a weighting function between the two advected images for
both eigenvectors. The scalar factor r is used to blend between the two tensor
directions. If both directions are equally important, a value of 0.5 ensures an
equal blending of both directions. To explain the above compositing scheme,
we are using the red component as an example. The red color should represent
the main tensor direction. We therefore reduce the intensity of the second
eigenvector image Aλ2 using the over-emphasized first eigenvector image Aλ1 .
To furthermore emphasize the influence of a high intensity in the advected
image for the first eigenvector, the denominator is squared. This way, pixels
with a high intensity in the first eigenvector direction get a high red intensity.
This is done vice versa for the green channel. The compositing implicitly
utilizes the clamping to [0, 1] which is done for colors on the GPU. Additionally,
it is possible to blend in the edges or the original coloring and lighting of the
geometry, as shown in Figure 7.5. The final image is then shown on screen
again.

Using this offscreen pipeline, we were able to reproduce the mesh-like struc-
ture of a second-order tensor field on arbitrary geometry, independent of the
algorithm creating the geometry or the source of the tensorial data. But as
Figure 7.5 showed, the results are rather blurry and do not represent a clean
mesh structure perfectly.

7.3 Method

In the previous section, we introduced the original TensorMesh method. Right
after publishing my diploma thesis [48], we thought about how to improve the
visual quality of the method and published the results [P7]. These improve-
ments are the subject of this section.

7.3. Method 119

(a) TensorMesh

(b) Zoomed in

Figure 7.5: The composited image produced by the compositing shader. (a): the
whole geometry. (b): a zoomed part of the geometry to show the still blurry fabric
structure on the surface. The chosen geometry has no further meaning. We have
chosen an arbitrary, rather unshaped surface inside a brain’s DTI image to show
how well TensorMesh works on these kind of surfaces. Especially (b) shows that our
method properly detects and handles the borders of the geometry.

120 Chapter 7. Improved TensorMesh

Figure 7.6: Flowchart indicating the additional postprocessing step in the context
of the original TensorMesh method. Instead of rendering the formerly final image
to screen, it is now stored in a texture. The postprocessing step can then utilize
the image and improve its visual quality. Additionally, the original projection step
now also outputs the surface normals in screen space to a texture. Besides this, the
other outputs of the projection and silhouette detection steps are reused. They have
been calculated by the original method, and we bind them as input textures to the
postprocessor to achieve the effects described in this chapter.

As the original TensorMesh method completely works in screen space, it
was easy to extend it with another, fifth offscreen processing step: the post-
processing. Figure 7.6 shows the updated method schematically. We modified
TensorMesh to output the image to another texture, which then can be pro-
cessed by the postprocessor.

7.3.1 Postprocessing

Figure 7.5 shows the result of Equation (7.6) combined with Blinn-Phong shad-
ing. Even though Blinn-Phong shading [18] provides the required depth cues,
additional emphasis of the third dimension using depth-enhancing color coding
has proven to provide a better overall understanding of the data [30]. These
techniques can be incorporated in our compositing scheme easily, but provide
a perception improvement for the shape of the geometry only. The results still
look blurry and justify the need for additional postprocessing to improve the
structural detail on the surface. We have implemented two postprocessings
which reduce blur and create crisp and appealing images, which improve the
perception of the represented structures tremendously.

At this point, please keep in mind that the following calculations work
in screen space and need to be done for each visible pixel P . For the sake
of simplicity, we left out the explicit reference to P in each of the following
formulae, although they are dependent on the current P .

7.3. Method 121

Bump Mapping

In computer graphics, triangles are usually used to represent complex geomet-
ric objects. The surface of these objects can be lit in many different ways,
for example with Blinn-Phong shading [18] or Cook-Torrance shading [32] to
mention only two. Whatever method is chosen, they have one thing in com-
mon: the surface normal. It defines the surface’s orientation and significantly
influences the shading of it – and the shading defines the local structure and
how the human vision percepts the surface and its shape. For details on the
perception of shape, structure and spatiality, we refer the reader to the work
of Ramachandran [155], Langer and Bülthoff [103], and Wanger et al. [215].

The surface normal is usually defined per triangle or vertex and is linearly
interpolated in between. To increase the surface detail, one has to tremen-
dously increase the triangle mesh complexity. This is not feasible as the graph-
ics processor will reach its limits sooner or later. To circumvent this issue,
bump mapping was introduced by Blinn [19] to simulate three-dimensionality
via shading in otherwise planar surfaces. The idea is to define a normal-map
on a planar surface, like a triangle. This additional map allows assigning dif-
ferent normals to each rasterized point of the surface. This way, the amount
of normals on a single triangle can be increased tremendously. Accordingly,
the shading can reproduce more structural detail on it. The bump mapping
technique is quite widely used in computer games to simulate high detailed
surface structures on a few triangles only. A typical example would be the
rough stone texture on a coarsely modelled rock. We wanted to achieve a sim-
ilar effect for the TensorMesh rendering. This is why we use the basic idea of
bump mapping to improve the structural perception of the fabric mesh on the
rendered surface.

The original bump mapping method relies on a given normal-map and
precalculated surface tangents. The normal-map is usually created by a model
designer to match the requirements of the specific object. With the normal
and a tangent at each point, bump mapping is able to define the so-called
tangent space. With the help of this, all lighting calculations, independent
of the actual light model used, can be done in tangent space. We do not
use this method, since we do not have the tangent space available in screen
space anymore. Instead we rely on the conceptual idea of bump mapping,
namely using a specific normal for lighting at each rasterized point. For specific
implementation details on the original bump mapping method, we would like

122 Chapter 7. Improved TensorMesh

to refer the reader to the book Mathematics for 3D Game Programming and
Computer Graphics, Section 7.8 on bump mapping by Lengyel [106].

To achieve a similar effect in screen space, we modify the original approach
and extend it to use normals implied by the mesh structure on the surface. To
calculate a normal at a pixel P , we first calculate the two-dimensional gradient
of the intensities of the original TensorMesh result texture. We call this

g = ||∇(R +G)||. (7.7)

Using R+G, we denote the intensity of a pixel. According to Equation (7.6),
we only use the red and green channel. The blue channel can be ignored as
the original TensorMesh only produces output in the red and green channel.
In practice, gradient calculation on the GPU can be done fast by calculating
the difference quotient in x and y directions, with a step size of one pixel.

Additionally, we modified the projection step of the original method to pro-
vide screen space surface normals in a texture. Figure 7.6 shows the normal-
map as an additional outcome of the TensorMesh algorithm. The projec-
tion step calculates this normal-map by projecting the eye space normal to
screen space. This is done by using the projection matrix of the rendering
system, as explained in Section 6.1.2. Please note that the normal still is
three-dimensional.

With the gradient vector, we are now able to deviate the screen space
normal n in direction of g. The new normal

n′ = n+ (gx, gy, 0)T (7.8)

can then be used in the Blinn-Phong equations to calculate the overall light
intensity. In our case, we only use the diffuse and specular parts. Ambient
light is not used, as it is not depending on the normal and, hence, does not
contribute to the bump-mapping effect. This yields the amount of reflected
light of a single light source i as

Bi =I ini kdiffuse < Li, n
′ > +

I ini kspecular < ||Li + V ||, n′ >s
(7.9)

and for all light sources
B =

∑
i∈lights

Bi. (7.10)

7.3. Method 123

The vectors Li and V are the normalized screen space vectors pointing from
P to the light source (L) and the camera point (V) respectively. The material
properties kdiffuse, kspecualr, and s are usually defined by the rendering system,
but in our case, we set kdiffuse = 1, kspecular = 1, and s = 200. They represent
the material’s diffuse and specular reflectance as well as its shininess. We
have chosen these values as we are interested in the reflection factors only.
We cannot tell anything about the material properties, nor do we want to
implement a physically accurate lighting model. Our focus is on a light-based
shading of the mesh structure for improved structural perception. This is
also the reason for setting the incoming light intensity I ini = 1. The high
shininess value s ensures subtle specular highlights on the mesh structure. We
additionally do not calculate the reflection factor B separately for each color
channel. This is because we do not want to stain the color of the rendering due
to non-white light sources. This way, we keep the original red-green coloring
of the TensorMesh.

B can now be combined with the original colors and the edges e at P that
have been calculated by the original method. The pixel’s RGB triple is then
defined as

Rbump = B ·R + e,

Gbump = B ·G+ e,

Bbump = e.

(7.11)

This yields the rendering Figure 7.7(a). When adding a contrast enhancement
to the red and green channels as

Rbump = B · (R ·G+R2) + e,

Gbump = B · (R ·G+G2) + e,

Bbump = e,

(7.12)

we are able to improve the crispness of the rendered image as shown in Fig-
ure 7.7(b), compared to Figure 7.7(a). Keep in mind that we are using the
automatic clamping of each color channel to the interval [0, 1]. This way, the
silhouette of the geometry is always white and we do not need to take care
that the contrast-enhanced colors are larger than one. The Equations (7.11)
and (7.12) also allow combining the enhanced TensorMesh with other effects
and colorings, calculated earlier. For example, we combined a colormap of the

124 Chapter 7. Improved TensorMesh

original data with the mesh, as shown in Figure 7.10. This information can be
transferred using the “Color & Light” texture from Figure 7.6.

Streamtube Effect

With the help of bump mapping, we achieve a better spatial impression of
the fabric-like pattern. A different visual improvement can be achieved by
interpreting the structure on the surface as streamtubes along the surface.
The idea of representing trajectories and streamlines using tubes is not new.
Zhang et al. [234] used streamtubes to visualize DTI data of the human brain.
The approaches of Merhof et al. [128] and Schirski et al. [174] enabled the use
of large amounts of tubes without performance penalty due to the increased
amount of geometry, when compared to simple lines. We also create the visual
effect of streamtubes on the geometry’s surface, without actually creating tubes
to replicate the mesh effect.

The first test to do before doing any further calculations is to check whether
the pixel P currently belongs to one tube of the original TensorMesh. This
can be done by checking the value of the red and green channel of the input
TensorMesh texture at P . If the red or green channel is larger than a given
threashold, 0.2 in our case, then it belongs to a tube. If not, the pixel can be
skipped and rendered in black.

Next, we need to have a tangential coordinate system, similar to the one
needed for the original bump mapping. The screen space eigenvectors v′λ1 and
v′λ2 from Equation (7.5), transferred using the Eigen-map texture, are inter-
preted as the tube tangents for the first and second eigenvector field. These
tangents denote the direction of the tube along the surface and, together with
the trivial surface normal of (0, 0, 1)T , define the bi-normal vectors for each
eigenvector field. When thinking of each tube as cylinder that runs parallel to
the screen plane, and its direction is defined by the eigenvector on the screen
plane, we can define the bi-normals as radial vector b for each eigenvector field
to be

bλ1 = ||(0, 0, 1)T × v′λ1|| and bλ2 = ||(0, 0, 1)T × v′λ2||. (7.13)

To simplify the further descriptions, we describe the next steps for rendering
the tubes of v′λ1 . These steps need to be done for the second eigenvector too.

The bi-normal bλ1 is now used to find the correct normal on the tube-surface
at the current pixel for lighting. As we already know that a pixel is on a tube,
we search the boundaries of the tube in radial direction. Therefore, we sample

7.3. Method 125

(a) Bump mapping only

(b) Bump mapping with enhanced contrast

Figure 7.7: The final image produced by the postprocessing shader in combination
with bump mapping and combined edges. Top: standard bump mapping. Bottom: the
same zoomed part of the original geometry to show the effect of additional contrast
enhancement of Equation (7.12). This approach creates a more fabric-like impres-
sion and looks like rotating ribbons similar to stream ribbons.

126 Chapter 7. Improved TensorMesh

in direction of the bi-normal, to find the pixel whose red color value is smaller
than 0.2. The step size is one pixel and the value 0.2 is the threshold we used
earlier to check whether a pixel belongs to a tube or not. In other words, we
search for the smallest, positive scaling factors apλ1 and anλ1 , which scale the
bi-normal bλ1 and −bλ1 to point to the nearest pixel with value < 0.2 in the
red channel. The width of the tube passing the current pixel is then defined
by apλ1 + anλ1 and

pλ1 = 2 ·
(

0.5−
apλ1

apλ1 + anλ1

)
∈ [−1, 1] (7.14)

defines the relative position of the current pixel on this tube regarding the
(normalized) bi-normal, where 0 is the middle of the tube. Also note that apλ1

and anλ1 are both positive.
This information is enough to define a diffuse shaded surface. However, we

want proper per-pixel Blinn-Phong shading and therefore need to use this to
calculate the tube normal at the current pixel:

ntubeλ1 = (1− p2
λ1)(0, 0, 1)T + p2

λ1bλ1 . (7.15)

The value of p is additionally squared to achieve the effect of a round surface.
The normal ntubeλ1 is then used to calculate the Blinn-Phong shading on the
surface similar to Equation (7.9) and yields Bλ1 .

When doing the above steps for both eigenvector directions, one gets the
shading factors Bλ1 and Bλ2 . In combination with the silhouette e, they allow
the definition of the final RGB triple of the pixel P under consideration of the
[0, 1] interval-clamp of the GPU as

Rtube = Bλ1 + e,

Gtube = Bλ2 + e,

Btube = e.

(7.16)

This produces the tube-like effect with proper structural impression on the
surface as shown in Figure 7.8.

7.3.2 Implementation

The implementation of the pipeline shown in Figure 7.2 is straight forward
and can be done as indicated in Section 6.2. The figure clearly shows the

7.3. Method 127

Figure 7.8: Interpreting the final image from Figure 7.5 as streamtubes along the
geometry’s surface. When lighting them accordingly, the results are tremendously
less blurry and create a crisp and clean impression of a mesh-like structure on it.

input and output textures of each step and their execution order. The whole
pipeline is implemented using OpenGL and framebuffer objects (FBO), which
allow the efficient offscreen rendering and screen space based processing we
need. Each step is implemented using a vertex/fragment shader pair and
simply evaluates the above mentioned formulae for each pixel. The projection
step is the beginning of the pipeline and the only step which is not in screen
space. For the consecutive steps, we render a quad, filling the whole viewport
of the FBO. The outputs and inputs are then bound as textures to the FBO
and the quad respectively. The used textures are 8 bit per channel textures and
of the same size as the viewport to avoid any interpolation when reading the
textures as input. The increased numerical precision in floating point textures
is not needed for TensorMesh and the postprocessing step.

Types of Surfaces Our implementation is not limited to a special kind of
geometry. It is able to handle every second-order tensor field defined on a
surface. It is, for example, possible to calculate an isosurface on a derived scalar
metric, like fractional anisotropy, or on a second dataset to generate a surface
in a three-dimensional data domain. Other methods include hyper-stream
surfaces [41], wrapped streamlines [49], or domain-dependent methods like

128 Chapter 7. Improved TensorMesh

dissection-like surfaces, as presented by Anwander et al. [6]. Direct rendering
approaches, like isosurface ray-tracing by Knoll et al. [94] and other similar
approaches are possible too. The only requirement for the surface is that
it is non-self-intersecting and that smooth normals are provided as they are
required for the projection step and for proper lighting.

Tensor Upload and Processing As the tensors are symmetric, it is sufficient
to transfer six floating-point values per vertex to the GPU. In our case, two
three-dimensional texture coordinates are used per vertex to upload the tensor
information along with the geometry. Assuming the tensor T is available
on the GPU, it is possible to map the two main directions to the surface
described by the normal n at the current vertex using Equation (7.3). This
projection is implemented in a per-vertex manner in the vertex shader. In
contrast, eigenvalue decomposition, eigenvector calculation, and screen space
projection need to be done in the fragment shader. Since the eigenvectors are
without orientation, it is possible to have sign flips between adjacent vertices.
If the interpolation on the surface in between the vertices takes place after
the eigenvector decomposition, these sign changes can render the interpolation
useless.

The projected eigenvectors v′λ1 and v′λ2 need to be scaled since textures are
used for transportation, where each value must be in the interval [0, 1]. To sim-
plify further data handling and storage on the GPU, we scale the eigenvectors
as follows:

‖v‖∞ = max{|vx|, |vy|} (7.17)

v′′λi
=

v′λi

‖v′λi
‖∞

with i ∈ {1, 2}, and ‖v′λi
‖∞ 6= 0 (7.18)

The maximum norm (L∞-norm) ensures that one component of the eigenvector
is 1 or−1 and, therefore, one avoids numerical instabilities arising when limited
storage precision is available, and can use memory-efficient eight-bit textures.
The special case ‖v′λi

‖∞ = 0 only appears, if the surface normal and the
eigenvector both point into the same direction. This case needs to be handled
in the shader. The scaling can be avoided when using floating point textures.
However, we found that the increased storage precision provides no further
advantage visually and qualitatively.

7.4. Results 129

7.4 Results

In the last section, we introduced our extension of TensorMesh to improve
visual quality and increase structural perception of the represented tensor data.
It is a fast screen space approach, similar to the one introduced by Hotz et al.
[83] and used ideas from [104] to transform the algorithm into screen space.

Our implementation, using this method, was able to reach frame rates high
enough for real-time user interaction. The only bottleneck is the hardware’s
ability to render large and triangle-rich geometry. All further steps can be
done in constant time. This section shows several datasets, rendered with our
improved TensorMesh method. We compare it to the original method and
show the computational overhead we introduced.

Artificial Test Data We calculated a spherical test dataset as scalar volume.
We used an isosurface generated using the marching cubes algorithm [113].
The Laplacian of the spherical scalar field is used as second-order tensor on
the surface. The result is displayed in Figure 7.9 and compares the original
TensorMesh with the improved version we introduced here. Figure 7.9(b)
provides a hugely improved structural perception of the mesh structure.

Medical Data Even though many higher-order methods have been proposed,
due to scanner, time, and cost limitations, second-order tensor data is still dom-
inant in clinical application. Medical second-order diffusion tensor datasets
differ from engineering datasets because they indicate one major direction,
whereas the secondary and ternary directions only provide information in ar-
eas where the major direction is not well defined, i.e., the fractional anisotropy
– a measure for the tensor shape – is low. Almost spherical tensors, which
indicate isotropic diffusion, occur in areas where multiple fiber bundles tra-
verse a single voxel of the measurement or when no directional structures are
present. Therefore, we modulate the color coding using additional informa-
tion: In areas, where one fiber direction dominates, we only display this major
direction using the standard color coding for medical datasets, where x, y, and
z alignment are displayed in red, green, and blue, respectively. This coloring
is often called local directional coloring [145] in medical applications. In areas,
where a secondary direction in the plane exists, we display this in gray-scale.
Figure 7.10 demonstrates this and, again, compares the original TensorMesh
method with our streamtube improvement. When comparing both renderings,
the streamtube improvements create a more crisp and less blurry result.

130 Chapter 7. Improved TensorMesh

(a) Original TensorMesh

(b) Bump mapping on TensorMesh

Figure 7.9: TensorMesh applied to a spherical test dataset. We applied our method
to an isosurface and the scalar field’s Laplacian to demonstrate the visual difference
between the original TensorMesh (top) and our improved version introduced here
(bottom).

7.4. Results 131

(a) Original TensorMesh

(b) Streamtube improvement

Figure 7.10: An axial slice through a human brain: Corpus callosum (CC) (red),
pyramidal tract (blue), and parts of the cinguli (green in front and behind the CC)
are visible. The main direction in three-dimensional space is indicated by the RGB
colormap, where red indicates lateral (left–right), green anterior–posterior, and blue
superior–inferior direction. The left–right structure of the CC can clearly be seen in
its center, whereas color and pattern indicate uncertainty towards the outer parts.
The same is true for the cinguli’s anterior–posterior structure. As seen from the blue
color, the pyramidal tract is almost perpendicular to the chosen plane and, therefore,
secondary and ternary eigenvectors dominate the visualization. Alternatively, we
could easily fade out those out-of-plane structures in cases, where they distract the
user. Please note that we have applied a contrast enhancement filter on both images
to improve the print quality.

132 Chapter 7. Improved TensorMesh

(a) Original TensorMesh

(b) Bump mapping on TensorMesh

Figure 7.11: A slice in the well known single point load data set, showing the
symmetric strain tensor at the surface of the slice.

7.4. Results 133

In Figures 5.15 and 5.16 of Chapter 5, we also applied the bump mapping
scheme to a screen space based LIC of an electrical field on the skull. The
figure shows two different projection angles causing a noisy and a very LIC-
like result. Due to bump mapping, the structure of the LIC noise is very clear
and the contrast between ridges and valleys is high. It is possible to defer the
shading of the surface itself to the shading of the structure on the surface. This
way, the surface’s shading does not influence the contrast of the LIC result on
it. This already shows that screen space postprocessing is not only useful for
TensorMesh, but also for other surface-based visualizations.

Mechanical Datasets Our approach is not only applicable to medical datasets,
but it can also be applied to many other kinds of tensor data. Figure 7.11
shows a slice in an analytical strain tensor field. The analytical dataset is
the well known single point load dataset, where a single, infinitesimally small
point source pushes on an infinite surface. The forces and distortions inside
the object are represented by stress and strain tensors, which are symmetric,
second-order tensors. Similar to the above examples, we compare the original
method with the bump mapping improvement. The visual quality and the
perception of the mesh structure is tremendously improved.

7.4.1 Performance

As the major part of the TensorMesh method works in screen space, it is
mostly independent of the input data complexity. As indicated before, the only
“bottleneck” in the visualization pipeline is the strongly geometry-dependent
projection step. But in practice, this is not that critical, since the rendering
time of geometry is determined by the GPU itself. More interesting is the
overhead the TensorMesh method adds on top.

Theoretical View and Expectations When analyzing Figures 7.2 and 7.6, as
well as the working principles of each of the steps, it gets obvious that the ad-
vection step might be the most GPU intensive part. From the GPU’s point of
view, the silhouette detection and compositing steps do nothing else than ac-
cessing the bound input texture locally and blending RGBA quadruples/RGB
triples — the hardware implemented core functions of a GPU. These steps
do not need branching nor do they access textures non-locally. This avoids
waiting shaders in a group and cache misses in the shader local memory. In
contrast, the advection step uses branching (if-condition) to check whether a

134 Chapter 7. Improved TensorMesh

Postprocessing Frames per second

None 350

Bump Mapping 341

Streamtubes 311

Table 7.1: Frames per second (FPS) with different postprocessings for the strain
tensor data in Figure 7.11. It is obvious that the method works in real-time and that
the postprocessings add only a minor overhead.

silhouette is reached. Additionally, depending on the number of iterations, it
might leave the local texture memory. The effect can be tested easily when in-
creasing the number of iterations per frame. Per default, we use ten iterations.
The same is true for the postprocessing step; especially the streamtube effect,
as it samples the surroundings of the current pixel. However, the number of
samples needed to find the tube boundaries is low, as the tubes are usually
only several pixels in diameter. Additionally, the postprocessing and advec-
tion steps discard pixels early. This leads to performance gain in advection
and postprocessing.

Measuring Performance As screen space approaches depend on the amount
of pixels covered, we use the rendering in Figure 7.11 as an example. They
cover the screen completely. The measurements were done on an Intel Core
i7 CPU at 3.33GHz and 24GB RAM with a NVidia GeForce GTX Titan. As
usual, the CPU does not play an important role for screen space methods. The
images were rendered in a resolution of 1080× 1080.

Table 7.1 shows the measured FPS values for different postprocessings.
The frame rates for the other result images we have shown are similar, since
they cover a similar amount of screen space and their geometric complexity is
also very low. Hence, their exact values are not relevant here. In my original
diploma thesis, it was shown that the TensorMesh method works in real-time
with a NVidia GeForce 8800 GTS. Today, this can be seen as low end GPU.

Table 7.2 validates the above theoretical assumption that an increasing
iteration count for the advection step will cause a tremendous drop in per-
formance. Similarly, when zooming into a streamtube rendering, as done in
Figure 7.12, the amount of samples to find the tube borders increases. This
causes a frame rate drop comparable to the iteration count. As the advection
step and the streamtube postprocessor use a step size of one pixel, a tube ra-

7.5. Discussion 135

Iterations Frames per second

10 350

20 230

30 180

100 70

150 58

Table 7.2: Frames per second (FPS) with different iteration counts in the advection
step for the strain tensor data in Figure 7.11. The frame rates drop fast, when
increasing the iteration count.

dius of 100 pixel will cause a frame rate drop to 20% of the original streamtube
rate (cf. Table 7.2).

However, in practice, these high iteration counts play no important role.
For the above images, we used an iteration count of ten, yielding interactive
results. Additionally, zooming into a TensorMesh rendering should increase
the resolution of the noise on the surface, showing more details and ensures
thin tubes.

7.5 Discussion

7.5.1 Limitations and Problems

Projection to a Surface

Whether the surface itself is the domain of the data, a surface defined on the
tensor information (e.g., hyper streamsurfaces), or a surface defined by other
unrelated quantities (e.g., given by material boundaries in engineering data
or anatomical structures in medical data) is independent from our approach.
Nevertheless, the surface has to be chosen appropriately, because only in-plane
information is visualized. In Figure 5.16, the effect of different maximum
projection angles for LIC is shown. Projecting nearly perpendicular vectors to
the surface yields questionable results.

To overcome this limitation, information perpendicular to the plane could
be incorporated in the color coding, but due to a proper selection of the plane
that is aligned with our features of interest, this has not been necessary for
our purposes.

136 Chapter 7. Improved TensorMesh

Artifacts

As screen space methods work with a super- or sub-sampled version of the orig-
inal data, they might suffer artifacts introduced by interpolation or skipped
data points. Figure 7.9 already indicates this. The green mesh on the sphere’s
surface does not look that circular. This is due to the resolution of the mapped
noise and sub-sampling near the visible center, spreading out the available
data. Respectively, the data at the visible border of the sphere is very com-
pressed due to the projection. This kind of limitation was also present in the
original TensorMesh and cannot be solved easily.

Another type of artifact is introduced by the streamtube postprocessor.
The artifacts can be seen in Figure 7.8, where we show a zoomed part of the
original rendering. As we do not integrate along the whole eigenvector field,
there may be discontinuities along a tube in the produced image. There are
also artifacts caused by a blurry input field, where borders cannot be found
clearly. But, since the frequency of the fabric structure is normally much
higher, and the tubes are not that large, these artifacts vanish and play no
important role, as shown in Figure 7.12(b).

Resolution

A general problem TensorMesh has in common with many other methods is
the resolution limitation caused by the structural density of the visualization.
This means, the maximally visible frequency of the mesh structure limits the
resolution of the visualized data. The problem gets especially evident when
considering it in the context of projection, as mentioned above. The resolution
of the data mapped to a certain area on screen changes when changing the
view on the scene. Important details of the data might get projected to an
area on screen, whose resolution is smaller than the structural TensorMesh
resolution.

Approaches to preliminarily find interesting areas and highlighting them,
are no solution to this problem, as the interesting areas still might be too
small with respect to their projected area on screen. Instead, possible solutions
would include focus and context techniques, where the level of detail is adapted
according to zooming or by using virtual lenses.

7.5. Discussion 137

(a) Tube effect

(b) Artifacts when zoomed in

Figure 7.12: These renderings show a zoomed part (bottom) of the streamtube
postprocessor effect from Section 7.3.1. Although the artifacts in the tubes are not
visible in the top image, they get visible when zooming in. These artifacts are caused
by discontinuities during advection and the partially blurry input images, calculated
by the original TensorMesh method.

138 Chapter 7. Improved TensorMesh

7.5.2 Future Work

Especially in medical visualization, higher-order tensor information is becom-
ing increasingly important and different methods exist to visualize these ten-
sors, including local color coding, glyphs, and integral lines. Nevertheless, an
extension of our approach is one of our major aims. In brain imaging, experts
agree that the maximum number of possible fiber directions is limited. Typi-
cally, a maximum of three or four directions in a single voxel are assumed (cf.
Schultz and Seidel [179]). Whereas the number of output textures can easily
be adapted in our setup, the major remaining problem is a lack of suitable
decomposition algorithms on the GPU. Screen space techniques, by their very
nature, resample the data and, therefore, require one to use proper interpola-
tion schemes. In addition, maintaining orientations and assigning same fibers
in higher-order data to the same texture globally is not possible today and,
therefore, is a potential topic for further investigation.

An important future step is to evaluate the shown methods with scientists
of several fields to measure the improvements and to find possible issues critical
to a field’s scientist.

7.6 Conclusion

The original TensorMesh method is a fast, GPU-based second-order tensor vi-
sualization, inspired by the PBM technique of Hotz et al. [83]. It is very well
suited to visualize tensorial data in mechanical and medical data by utilizing
the structural perception capabilities of the human vision apparatus. Unfor-
tunately, the results of the original TensorMesh approach where rather blurry,
hence the perception of structure was often suboptimal.

We have presented a useful and reasonable extension to the original Tensor-
Mesh method. We have shown the improvement of structural perception of
this mesh-like tensor visualization and made the results crisp and clear. With
this, the tensor field structure can be grasped even better.

We have shown that computer game methods and other postprocessing ef-
fects can help to improve visualization techniques. They do not only create
visually appealing images, which often is frown upon in science, but also im-
prove perception. Of course they are not able to negate issues inherent to a
certain method, like the sampling and projection issue mentioned above.

During my PhD, the experiments done with TensorMesh were the “ignit-
ing spark” to engage myself in computer graphics and screen space methods

7.6. Conclusion 139

to improve the spatial and structural perception of existing visualization tech-
niques.

In this chapter, we have shown how to improve structural perception of
data represented on surfaces, while the next chapters focus on spatiality and
structural perception at different scales for line and point data.

140 Chapter 7. Improved TensorMesh

141

8
LineAO – Improved

Three-Dimensional Line
Rendering

This chapter is based on the following publications:

[P9] – S. EICHELBAUM, M. HLAWITSCHKA, and
G. SCHEUERMANN. LineAO – Improved Three-
Dimensional Line Rendering. IEEE Transactions on Vi-
sualization and Computer Graphics 19.3 (2013), 433–445
Online: http://sebastian-eichelbaum.de/pub13a

[P10] – S. EICHELBAUM, M. HLAWITSCHKA, and G.
SCHEUERMANN. Vue en tractographie d’un cerveau
humain. LeMonde Science Online, 2012: la science en im-
ages. 2012
Online: http://sebastian-eichelbaum.de/pub12a

[P11] – S. EICHELBAUM, J. KASTEN, M. HLAWITSCHKA,
G. SCHEUERMANN, and B. R. NOACK. Leading edge
vortices of flow over a delta wing. Gallery of Fluid Motion,
Poster, P55. 2012
Online: http://sebastian-eichelbaum.de/pub12b

http://sebastian-eichelbaum.de/pub13a
http://sebastian-eichelbaum.de/pub12a
http://sebastian-eichelbaum.de/pub12b

142 Chapter 8. LineAO

8.1 Overview

The Data: Lines In many areas of visualization, line rendering techniques
play an important role. In flow visualization, three-dimensional vector fields
are visualized using streamlines, streaklines, or pathlines. They have a direct
physical meaning and are used to understand simulated and measured data in
many parts of engineering. Lines are used to represent electric and magnetic
fields as well as velocity fields in a very intuitive way. Even in tensor fields,
where a line tangent is not given explicitly, tensor lines and hyperstream-
lines [42, 157] are used to display important structures of the field.

But vector and tensor fields do not only play a crucial role in flow visu-
alization. In medical visualization, a large variety of measuring and imaging
methods, such as electroencephalograhy (EEG) or magnetic resonance tomog-
raphy (MRT), are available. From EEG, it is possible to derive the describing
electric field in the head and represent it using field lines. Additionally, field
line representations for simulations of different head and tissue models allow
a better understanding of the underlying models and parameter influences, as
shown in Chapter 5.

Using diffusion tensor imaging (DTI) or high angular-resolution diffusion
imaging (HARDI), it is possible to coarsely reconstruct the neuronal connec-
tions inside the brain and to obtain a better understanding of its structure.
These techniques are called fiber tracking or tractography [9, 15, 78, 134, 179]
and are often based on enhanced streamline techniques.

In general, lines are very well suited for visualizing directional information
on a global scope. The above mentioned techniques and imaging approaches
are only examples of the myriad of use cases, where line data plays an impor-
tant role. Accordingly, visualization of line data is crucial to understand the
intrinsic properties of a huge variety of real-world phenomena and simulated
scenarios.

Visualization of Line Data Each kind of line data, each visualization tech-
nique, and each scientific use case has its own specific properties and con-
straints. Mostly, large and dense line data is given and the structural relation
of bundles of lines as well as local shape information is crucial for understand-
ing the represented structures. For exploring this kind of data, filtering and
rendering of line data in real-time is an important requirement for modern
visualization techniques. Besides this, consistency of rendered images under

8.1. Overview 143

modification and interaction with the data is important to retain the mental
image of its structure.

Current line data rendering approaches usually employ local illumination
models for lines to emphasize the shape of lines and line bundles [117, 238].
These techniques apply a simplified Blinn-Phong [18] shading, which provides
diffuse reflection and specular highlights and allows depiction of local shape
features. A hurdle to overcome with local illumination is the definition of a
proper normal for lines. As there are endlessly much perpendicular vectors
at each point of a line, Mallo et al. [117] uses the vector whose angle to the
camera vector is the smallest. Section 8.3.2 explains this in more detail.

An alternative approach is to create the look of real cylindrical tubes by
rendering line data using quad strips [173, 198] or triangle strips [128]. These
approaches allow correct lighting (according to Phong’s lighting model) and
keep the density of the rendered lines while zooming, which often is a require-
ment.

Besides these shading techniques, there are approaches which utilize depth
cueing and haloing to provide further structural information. In [52], depth-
dependent halos are rendered around lines to emphasize tight bundles of lines.
The additional depth cueing further increases depth perception in this method.
Unfortunately, due to the heavy overlapping of halos, this type of depth cueing
loses its effect if the line data is very dense.

Another approach is to interpret dense line data as volumetric data. Schuss-
man and Ma propose a method for sampling extremely dense line data and
rendering them with direct volume rendering [180]. Unfortunately, this method
does not focus on spatial perception in the final volume rendering.

Hair rendering is another shading technique for dense line data, which
relies on simplifications implied by their underlying model: All hair rendering
techniques are optimized to mimic the effects of light scattering in a multitude
of thin, translucent hair without caring about the exact shading of each single
strand of hair. Therefore, most of the geometric simplifications that make
hair rendering efficient cannot be used in visualization since, in scientific data,
each single line’s shading is important. For a comprehensive overview and
up-to-date hair rendering techniques, we refer to [151, 216, 229, 230, 231].

The Problem Although most current approaches are able to depict local shape
of line data, they are not able to properly represent global, spatial relations
and the local structure in bundles of dense line data at the same time.

144 Chapter 8. LineAO

Figure 8.1: Fiber tractography rendered using illuminated lines [117] (left) versus
LineAO (right) and LineAO colored according to the local tangent direction [145]
below. The improved perception of spatial relations between and in bundles of lines
can be seen especially well in the brain stem (center bottom part of the image), where
the Pons and Medulla Oblongata pass into the Spinal Cord. The layering of these
bundles as well as the fissure structure in the Frontal Lobe can be observed very
distinctly. This was not possible before and the fact that LineAO works in real-time,
without any precomputations, makes it a perfect addition to nearly every line-based
visualization approach.

8.2. Background 145

Our Solution: LineAO With LineAO, we contribute a novel approach, which
overcomes these problems and provides a greatly improved structural and
spatial perception for the rendered line data in a very intuitive and natu-
ral way, as demonstrated in Figure 8.1. It uses ideas from ambient occlusion
and global illumination to allow a simultaneous depiction of local and
global line structures. It is known that global lighting effects are very im-
portant for determining an object’s position and spatial relations [103, 155,
214, 215]. Since real-time ability and dynamic scenes are a major demand
in many fields, our method renders in real-time, without precomputa-
tion and is, therefore, capable of being used in explorative tools, where the
researcher interactively modifies the line data. We combine global ambient
lighting with the scattered light contributions from surrounding lines and ad-
here to the intrinsic fixed line width on screen, ensuring consistency under
modification and interaction. LineAO is a computer graphics method.
As such, it can be applied to any kind of line-based visualization,
independent of the underlying type of imaging modality, simulation type, or
measurement method.

The next section, will introduce the principles of ambient occlusion (AO),
the underlying theoretical model for LineAO. It explains different practical
approaches to implement the AO model and why they are not applicable to
line data. Section 8.3 then introduces the LineAO scheme and its transition
to screen space on a theoretical basis, followed by practically relevant imple-
mentation details. The chapter closes with several visualizations a detailed
discussion on LineAO.

8.2 Background

8.2.1 Ambient Occlusion

The term ambient occlusion, or AO for short, refers to a group of algorithms
that can be seen as a crude approximation of global illumination. In general,
the term global illumination refers to computer graphics algorithms, which
include global effects on the illumination of an object in the scene. These effects
might be shadows, reflections, refraction, absorption in volumetric objects,
ambient light, and others.

Roughly spoken, AO represents the diffuse lighting effect on a day with
overcast sky. This ambient light is a very complex and globally defined prob-
lem, since the whole scene defines the distribution of ambient light. For this

146 Chapter 8. LineAO

Figure 8.2: Illustration of Equation (8.1). Each geometry in the scene can occlude
a part (red and blue) of the unit hemisphere around P . This fraction weighted by the
relative direction to the surface normal describes the ambient occlusion of the small
surface element represented by the normal n at point P .

reason, real-time computer graphics was using only direct illumination for a
long time, where the ambient light is assumed to be constant at every point
in the scene. AO estimates the ambient light distribution in a complex scene
to imitate radiance of light on non-reflective surfaces. This increases the re-
alism of computer generated images and improves the perception of relations
between objects [103, 155, 214, 215].

Model of Ambient Occlusion

The AO factor describes the amount of ambient background light not reaching
the surface. In other words, it determines, how much of a surface is concealed
by other surfaces, prohibiting ambient light to reach the surface. To describe
this mathematically, we locally define a surface using its tangential plane at
point P with surface normal n. To measure the amount of occlusion for the
point P , it is required to measure the surface area of an unit hemisphere oc-
cluded by surrounding objects as demonstrated in Figure 8.2. Mathematically,
this surface area is defined by the integral over the unit hemisphere. The ac-
tual check whether a point on the hemisphere is occluded or not is done by a
binary visibility function V (ω, P), being 1 if the surface point is visible, and
0 if it is occluded. The unit vector ω hereby samples the unit hemisphere by
pointing from P to the surface point of the hemisphere Ω.

The amount of light energy reaching a point on the surface is defined by
the angle between the light direction and the surface’s normal. Using this,
AO defines the amount of skylight energy not reaching P due to the occlusion.

8.2. Background 147

This yields the standard ambient occlusion definition used in literature [7, 123,
158, 183]

AO(P, n) = 1
π

∫
Ω

(1− V (ω, P))〈ω, n〉dω, (8.1)

for point P on a surface and its normal n. Due to the influence of the scene in
the visibility function, it is obvious that there is no easy analytical solution to
the integral. Therefore, it is usually approximated and, for reasonable setups
of the geometry, can be approximated by the Riemann sum

AO(P, n) = 1
π

lim
s→∞

s∑
i=1

(1− V (ωi, P))〈ωi, n〉
π

s
, (8.2)

and truncated to a series of s samples

AO(P, n) ≈ AOs(P, n) = 1
s

s∑
i=1

(1− V (ωi, P))〈ωi, n〉, (8.3)

which approximates Equation (8.1) for a sufficiently high sample count s and
a well chosen distribution of ωi ∈ Ω on the unit hemisphere.

When replacing the binary visibility function 1 − V (ω, P) with a magni-
tude function ρ(ωi, P), which gives the amount of light reflected from the first
occluder in direction ωi from P , Equation (8.1) would be called obscurance
of P . This can be seen as an extension of AO in a way that it also includes
refracted ambient light from other objects in the scene. This is usually used
to create color bleeding effects.

Current Ambient Occlusion Techniques

To solve the above equation for complex scenes, many approximative algo-
rithms have evolved. Their main goal is to efficiently evaluate the visibility
function V for complex and large scenes. Thereby, these methods can be clas-
sified in ray-tracing approaches, which try to approximate the AO effect on
a physical basis and real-time approaches which try to achieve the AO effect
phenomenologically. In this section, we give an overview on these methods
and their drawbacks regarding line rendering.

Ray-tracing approaches often use proxy geometry to reflect the rather com-
plex scene with simpler primitives. This way, occluders can be described and
tested faster by the visibility function V . These proxy primitives are often an-
alytic objects such as spheres or discs [7, 10, 27, 81, 159, 237] or more complex
primitives that better match the given geometry [21, 213]. These approaches

148 Chapter 8. LineAO

often include heavy precomputation steps and produce an over-estimation of
the AO effect due to the approximative scene description. Due to the precal-
culation step, these methods are mostly limited to static scenes and only allow
limited interaction and interactivity, which is why we do not further consider
them.

Unlike physically correct techniques, the class of phenomenological ap-
proaches is able to run in real-time. The cornerstone of most of these tech-
niques is the image enhancement using unsharp masking of the depth buffer,
which has been presented by Luft et al. [115]. In their method, the depth
buffer of the rendered scene is interpreted as height field and compared with a
low-pass filtered copy. This is utilized to provide information about spatially
important areas, which then allows a modification of several image proper-
ties such as local contrast. Although this is no real ambient occlusion effect,
it provides a remarkable improvement in spatial perception and spawned a
whole set of methods grouped under the term screen space ambient occlu-
sion (SSAO). A widely known SSAO technique is CryTec SSAO [90, 131]. It
adapts unsharp masking and uses sparse sampling of the depth buffer to derive
visibility information in the neighborhood of a point in the scene, based on
information available in screen space. It uses the depth information in the
neighborhood of a pixel to estimate the amount of ambient light that reaches
the corresponding point on the surface. Due to the limited resolution in screen
space, this approach samples the ambient occlusion factor at a low angular
resolution, leading to inaccurate, results especially for small or distant objects.
It can be extended by using better sampling schemes [12, 55] or by adding
better filtering and distant occluders [183]. Two of the main disadvantages of
these methods are the low spatial resolution and the noise induced due to the
stochastic sampling scheme. Hoang and Low [79] introduced a multi-resolution
approach to combine the AO effects of distant objects with detailed local AO.

To circumvent the spatial resolution problem, hybrid approaches have been
developed that combine ray-tracing a simplified scene with SSAO [51, 158].
Other methods precompute additional fields or acceleration structures ab-
stracting the occlusion caused by objects [96, 101, 118] or precalculate the
transfer of incident light from an environment map into the incident radiance
on the surfaces [88, 186, 187]. Unfortunately, these methods suffer in being
constrained to static scenes or require precomputation steps.

Each of the above-mentioned techniques has its limitations towards some of
the render properties we mentioned in Section 8.1. Physically based approaches

8.2. Background 149

fail to provide real-time rendering or rely on heavy precomputation steps. As
these techniques aim at physically correct shading, they cannot emphasize
structure in line data using a physically incorrect but detail-emphasizing, il-
lustrative shading.

Phenomenological approaches work well in compact scenes with objects
with a certain minimal volume, due to the fixed sampling radii and low spatial
resolution. The low spatial resolution of these approaches prohibit the proper
shading of small and thin structures in line data due to aliasing. Although
the multi-resolution SSAO approach [79] can solve the problem of low spatial
resolution by sampling at multiple scales, it reaches its limits when applied to
thin structures as stated by Hoang and Low [80]. It does not modify the AO
approach itself and thus, does not incorporate any special obscurance weight
that allows for emphasizing global structures while retaining the local detail
in these line bundles. Additionally, phenomenological approaches often are
not able to create coherent renderings when zooming, as line bundles get less
dense when zooming. This is due to the intrinsic fixed line width on the screen,
which stays constant during zoom.

8.2.2 Ambient Occlusion in Visualization

Global illumination techniques and ambient occlusion have found their way
into more and more scientific visualization techniques recently. When consider-
ing that the well known direct volume rendering (DVR) technique is about the
practical implementation of optical models for light absorption and emission
in volumes, it gets obvious that it was naturally predestined for incorporating
ideas from global illumination into its underlying light models. For a com-
prehensive introduction to DVR and its underlying theoretical background,
please refer to Engel et al. [50]. In 1995, Max [121] published a survey on
different optical models in DVR and also handled a topic called obscurance.
Obscurance describes the influence of the vicinity of a point in space onto the
points lighting properties [237]. This was first used in DVR by Stewart [197],
and called vicinity shading, where the illumination of a sample point in DVR
was also influenced by the attenuation of light caused by surrounding voxels.

Later, a huge amount of techniques focusing on real-time global illumi-
nation of direct volume rendering (DVR) were introduced. This was mainly
driven by the increasing computational power of modern graphics hardware
and the established understanding, that global illumination and occlusion-
based shading can help to provide the required cues to keep track of the spatial

150 Chapter 8. LineAO

relations in the rendered images. Ruiz et al. [165] used the idea of obscurance
to provide realistic volume renderings and in 2009, Schott et al. introduced
a fast approach, which is able to handle transparent structures in a volume.
This was done by tracking the amount of light reaching each slice in the vol-
ume, using a directed, cone-shaped phase function. Other methods do not
only focus on light attenuation in a volume, but also incorporate dynamic illu-
mination effects [98, 189]. For further details on direct volume rendering and
other depth enhancement techniques, please refer to the literature, especially
Preim and Botha [153] as well as Engel et al. [50].

Not only DVR profited from the increasing acceptance of several global
illumination techniques. In 2006, Melek et al. [127] and Wyman et al. [228]
introduced global shading approaches for solid, triangle-based geometry. They
show the advantages of proper, global shading for isosurfaces [228] and thread-
like microscopy images. Later, methods were introduced to combine surface-
based global shading with volumetric shading [176].

Especially in medical applications, these techniques help to understand
structure and relations in three-dimensional anatomical data. Besides the med-
ical use case, chemical and bio-chemical visualization also profits from more
realistic rendering and, e.g., [201], [99], and [65] added ambient occlusion for a
better structural perception of very complex molecule structures. Gribble and
Parker [64] applied ambient occlusion to particle rendering and investigated
its effect in a formal user study.

8.3 Method

In the previous sections, we have summarized the state of the art in line ren-
dering, introduced the mathematical fundamentals behind AO, and given an
overview on available approaches for ambient occlusion rendering.

In this section, we introduce LineAO and show how LineAO uses the in-
trinsic fixed line width on screen for visibility evaluation while ensuring consis-
tency under zoom and interaction. We introduce a sampling scheme to solve
the problem of low spatial resolution in screen space and provide an obscu-
rance weight tailored towards line rendering to furthermore emphasize local
detail in bundles while retaining global structural shading. It prohibits heavy
darkening of local structures due to large, global structures. We finally provide
a pragmatic implementation guideline and show how we combine LineAO with
illuminated lines and tube-based rendering.

8.3. Method 151

8.3.1 LineAO Sampling Scheme

As we aim at a solution in screen space, we need to handle the problem of
low spatial resolution, common to nearly all SSAO approaches. To achieve
this, sampling on a single hemisphere is not sufficient. Occluders inside the
hemisphere will be missed, as well as occluders far away from the hemisphere.
We need to sample near and distant lines and classify them into levels of
distance. We, therefore, begin to extend the sampling scheme, weighting, and
view evaluation in Equation (8.3) to increase spatial resolution, while tailoring
it towards correct handling of local and distant occluders. First, we replace
the orientation-based weighting, with a custom obscurance weight g, which
attenuates the occlusion term 1− V :

AOs(P) = 1
s

s∑
i=1

[(1− V (ωi, P))g(ωi, P)] . (8.4)

To additionally allow evaluation of AO on multiple hemispheres, we include
a parameter r, defining the radius of the hemisphere used to sample the sur-
rounding objects. We call

AOs(P, r) = 1
s

s∑
i=1

[(1− V (rωi, P))g(rωi, P)] (8.5)

the local AO for a hemisphere with the radius r. Although the weighting
function g and the hemisphere radius r now allow the combination of AO for
multiple hemispheres, the radius is not sufficient for classifying distance levels
and, therefore, the different effects of local and global occluders to the current
point P . To accommodate this classification issue, we modify the visibility and
weighting function to depend on a parameter l, defining the level of distance.
The smaller l, the more local detail is emphasized. The larger, the more global
structures are important. It allows us to handle local and distant occluders
properly using V and g. This defines an ambient occlusion term for a given
distance level l, which accommodates for the different properties of distant and
near occluders:

AOs,l(P, r) = 1
s

s∑
i=1

[(1− Vl(rωi, P))gl(rωi, P)] . (8.6)

This yields the final evaluation of the AO fraction of one hemisphere with the
radius r for a point P with sh samples and distance level l. In contrast to
other approaches, we are able to handle distant occluders and local structure

152 Chapter 8. LineAO

directly with our specialized obscurance weighting function g, without the use
of proxy geometry as, e.g., in [183].

With Equation (8.6), we are now able to classify each occluder into distance
levels and to combine their AO effect using

LineAOsr,sh,r0(P) =
sr−1∑
j=0

AO sh
j+1 ,j

(P, r0z · (j2 + j)). (8.7)

LineAO evaluates Equation (8.6) sr times for increasing sampling hemisphere
radii and distance level l. The first iteration j = 0 represents the smallest
hemisphere, which is responsible for the local details, and uses sh samples on
the hemisphere. For the following iterations, the term sh

j+1 , ensures that the
number of samples per hemisphere is reduced. As LineAO sums up the occlu-
sion effects of near and distant occluders and ignores the possibly overlapping
occlusions on different hemispheres, it generates the intended effect of heav-
ier occlusion in very dense areas. The term r0z · (j2 + j) hereby defines the
increasing hemisphere radius for increasing distance levels. The zoom level
z, represents the relation between the supposed line volume in eye space and
the intrinsic fixed line width on screen and, therefore, creates a coherent AO
effect when zooming. The next section provides a definition for z in screen
space. Since j is zero for the first level, r0z defines the smallest hemisphere
for sampling in the direct vicinity of a line. Finally, LineAO is clamped to the
interval [0, 1].

In this section, we have presented our sampling scheme, which handles
the problem of low spatial resolution. With this, we are able to combine the
advantages of local detail with perception of global structure in line data,
due to an adaptive spatial resolution, depending on the distance level. To
achieve the goals mentioned in Section 8.1, namely emphasizing local detail
and global structure of line data simultaneously, we need to define a weighting
function g tailored towards this. In the upcoming sections, we show how
LineAO is efficiently evaluated by providing the definition of the zoom and
visibility function in screen space as well as a proper weighting function g to
ensure correct handling of thin structures locally and globally.

8.3.2 LineAO Evaluation in Screen Space

Until now, the LineAO sampling scheme was described in a general form.
Admittedly, an evaluation in eye space is not feasible, if real-time rendering is

8.3. Method 153

required. To solve this problem, we transfer the LineAO algorithm to screen
space. We therefore evaluate Equation (8.7) as a function of each pixel P in
the rendered line dataset. We, therefore, replace the notation of point with
pixel and provide a visibility function V and a special weighting function g for
emphasizing high-frequency detail in narrow line structures and low-frequency
features in a global context.

As these functions work in screen space, they allow simplifications in vis-
ibility testing and weighting, which are not feasible in eye space. For an in-
troduction to the modern graphics pipeline and screen space rendering, please
refer to Section 6.2.

For illustrating the different effects of certain parameters and functions, we
use an artificial spiral line dataset. It combines dense line bundles as well as
global overlapping of bundles at different distances.

Conceptual Overview

In LineAO, we follow the widely used concept of interpreting the depth buffer
as a height map around a pixel P . This map contains hills and valleys, which
represent the objects in the original scene. The sampling around the point P
on the hemisphere Ω is then defined by sampling the depth buffer around the
pixel P , in the area defined by the projected hemisphere. In screen space, this
is a circle. The pixel P is then assumed to be occluded to a certain degree
by hills above P , due to the fact that large hills cast shadows into a valley.
Figure 8.3 demonstrates this for a single hemisphere.

The LineAO sampling scheme now copes with the fact that a single sam-
pling hemisphere only captures nearby hills. To capture more distant hills
while retaining high local detail, one would need to increase the radius of the
sampling area, which requires an impractical amount of samples. Instead,
LineAO uses multiple sampling radii with decreasing amounts of samples.
LineAO densely samples the depth buffer around P to capture the local struc-
tural details and uses less samples on larger sampling areas to capture huge
hills, caused by distant line bundles.

How this works in detail and how LineAO weights the different samples to
achieve the desired effect, is described in the next section.

154 Chapter 8. LineAO

(a) Concept of AO (b) Interpretation in screen space

Figure 8.3: Illustration of Equation (8.1) as shown in Figure 8.2 and its inter-
pretation in screen space. In (b), the scene was rendered and the depth buffer of
the original scene around P is shown in green. To measure the amount of occluded
surface area of Ω, one can sample the depth buffer around P and check whether the
sample P + ωi is higher. This follows the interpretation of the depth buffer as a
rocky landscape, where hills cast shadows into the valley of P and occlude a certain
amount of ambient sky light.

The Per-Pixel Data

This is a list of additional information needed by LineAO in screen space and
where it can be gathered. Again, remember that each piece of information is
available on a per-pixel basis; thus, we describe them as functions of a pixel
P .

Projected Normal nl(P) LineAO requires a normal at each point on the line.
This was introduced in [117], where a line is interpreted as infinitesimally thin
cylinder for normal calculation. We calculate the normal of a line during the
rendering pass using its tangent T . With the vector C (pointing from the line
point towards the camera), the normal in eye space is defined as T×C

|T×C| × T ,
which represents a vector pointing towards the camera that is perpendicular
to the tangent. This normal is now projected using the projection matrix of
the rendering pipeline. As we normalize the resulting vector, we omit the
scaling by 1

w
for de-homogenization as it is not needed. This yields a normal

map n0(P) for the rendered lines. In addition, LineAO needs several l-times
low-pass filtered versions of this normal map. Therefore, we create a Gaussian
pyramid nl(P) and call l the Gauss level.

Depth dl(P) : During rendering, we store the depth value of each pixel in
a depth map d0(P). Similar to the normal map, the depth map needs to be

8.3. Method 155

available in several low-pass filtered versions. Thus, dl(P) denotes the l-times
low-pass filtered depth map for each pixel P . Again, l is called the Gauss level.

Zoom Level z: If we assume a sampling sphere with a radius of one in eye
space, the sampling sphere will have the radius r′ after projection, without
perspective scaling. It represents the zooming factor applied by the projection.
Mathematically spoken, this factor can be defined as the length of an unit
vector after projection from eye space to screen space. If we define a place-
holder matrix MCP , which represents the specific rendering systems camera
(view) and projection setup, we can calculate z as

z = |MCP (1, 0, 0, 0)T |. (8.8)

Keep in mind that it is common in computer graphics to use an additional
homogeneous coordinate w. In our case, it is 0 to avoid any perspective scal-
ing that might be done by the projection matrix. The length of the projected
vector can then be interpreted as the scaling ratio of the current camera and
projection setup. Using this zoom level z in Equation (8.7) causes the hemi-
sphere radii to adapt to the zoom level, thus ensuring a coherent LineAO effect
when zooming.

With these fundamentals, we are now able to solve the LineAO equation
in screen space.

Evaluating the Visibility Function

The visibility function V detects, whether a certain part on the hemisphere
around a pixel P is occluded or not. Compared to other screen space ap-
proaches such as [90, 131], we do not do a back projection to clip space for
visibility checks. The idea is to interpret the depth map as a height field. A
point in a valley is darkened due to the shadow a hill in its direct vicinity casts.
With this metaphor in mind, we evaluate the occlusion term 1−Vl(rωi, P) from
Equation (8.6) by checking whether the pixel P + rωi on the sampling hemi-
sphere is higher than P and, therefore, occluding P . Visibility is then defined
by the discontinuous step function

Vl(ω, P) =

1 if dl(P)− dl(P + ω) < 0

0 else,
(8.9)

where a smaller depth value dl indicates that the object is closer to the viewer.

156 Chapter 8. LineAO

By using the distance level as the Gauss level, dense line structures like bun-
dles merge to solid geometry at higher distances and coarse or single lines dis-
appear. In the next section, we introduce a very specialized weighting function
which attenuates the visibility due to certain criteria, like distance, distance
level l, and its surface properties to provide differentiated occlusion weighting
for local detail and global structures.

Evaluating the Obscurance Weight

So far, we determined occlusion on a binary basis only. Either a pixel was
occluded from one direction or not. The AO description from literature in
Equation (8.3) weights the binary occlusion by the diffuse reflection surface
property. This models the real-world phenomenon of ambient sky light very
well for solid geometry. For dense lines and other thin structures, we need a
more sophisticated weighting scheme, which handles local structures, global
structures, and their interaction at once. This is not yet available in other
SSAO approaches. Additionally, we include a weight to diminish the AO ef-
fect by the surface’s lighting properties using the material’s bidirectional re-
flectance distribution function (BRDF). This allows light sources to properly
illuminate areas even if they are nearly invisible in terms of ambient occlusion,
which cannot be compensated by applying lighting afterwards. This increases
visibility of occluded structures if they are lit directly, which is very important
in visualization.

To achieve this, we split the weighting into two parts: a depth-based at-
tenuation of visibility and an attenuation of occlusion by the surface’s lighting
properties:

gl(ω, P) = gdepthl (ω, P) · glightl (ω, P). (8.10)

Depth-based Attenuation For the depth-based attenuation, we use the same
depth difference that was used for the visibility function:

∆dl(ω, P) = dl(P)− dl(P + ω) ∈ [−1, 1] . (8.11)

For near occluders, ∆dl(ω, P) is the intensity of occlusion inside dense line
bundles. For distant occluders, this describes the intensity of drop shadows
and the inverse influence of empty space between several bundles. We need to
define a falloff function δ(l) that attenuates the depth difference according to
what kind of structure is currently sampled. Without a falloff, far occluders

8.3. Method 157

(a) Constant δ(l) = 1

(b) Our δ(l)

Figure 8.4: The influence of a proper falloff function for near and far occluders. In
(a), a constant falloff is used. This creates high occlusion in line bundles but over-
estimates the occlusion of far away lines. In (b), our quadratic falloff is used. It
creates high ambient occlusion in the spiral bundle, while handling the more distant
bundles properly. In contrast to (a), this ensures a see-through effect to the back of
the spiral, as marked by the white square.

158 Chapter 8. LineAO

with a large depth difference would occlude each other too much, as shown in
Figure 8.4. Remembering that the parameter l ∈ [0, sr − 1] in Equations (8.6)
and (8.7) specifies whether local or global structures are sampled, the falloff is
defined as

δ(l) =
(

1− l

sr

)2

∈ (0, 1]. (8.12)

For near occluders, it is 1, generating a high occlusion for lines in proximity
to others and converges towards 0 for far occluders. To additionally define the
minimal depth difference needed to apply depth-based attenuation for occluder
on P , we introduce the threshold δ0 = 0.0001. This now yields the depth-based
attenuation as

gdepthl (ω, P) =

0, if ∆dl(ω, P) > δ(l)

1, if ∆dl(ω, P) < δ0

1− h(dl(ω,P)−δ0
δ(l)−δ0

), else.

(8.13)

The value of gdepthl is 1 for near occluders, whose depth difference to the current
pixel is below δ0, thus maximally emphasizing local structure in direct vicinity
of the line. It is 0 and suppresses occlusion, if the depth difference exceeds the
maximum defined by δ(l). For l > 0 (more distant occluders), this helps to
avoid overly occluded distant line bundles as seen in Figure 8.4. In between δ0

and δ(l), we use the Hermite polynomial

h(x) = 3x2 − 2x3,∀x ∈ [0, 1] : h(x) ∈ [0, 1] (8.14)

on the depth difference scaled by the falloff function. For near occluders,
gdepthl emphasizes lines in direct vicinity of the line at P , thus emphasizing
local structure in dense line bundles. For occluders near in the image plane
but with a high depth difference, the occlusion effect is weakened to avoid
heavy influence on the shading of the local structures. In Figure 8.4(b), this
can be observed in the line bundles at the back side of the spiral. They still
show the proper local structure without being darkened too much by the front
side bundles as in Figure 8.4(a).

Illumination-based Attenuation By separating the calculation of LineAO and
local illumination [117], dense and heavily occluded areas will be very dark even
if these areas are directly lit by a source in their direct vicinity. To avoid this

8.3. Method 159

unwanted effect, we incorporate all the light sources of a scene into the LineAO
calculation to attenuate the AO effect in these directly lit areas.

We define BRDF(Ls, Is, n, v) to be the illumination intensity of a light
source s for a given light vector Ls, light intensity Is, view vector v, and
normal vector n. We calculate the reflected light Ll at the current point P in
direction of ω using

Ll(ω, P) =
∑

s∈Lights
BRDF(Ls, Is, nl(P), ω). (8.15)

The lighting-based occlusion weight can then be defined as

glight
l (ω, P) = 1−min(Ll(ω, P), 1). (8.16)

With this weight, we can attenuate the occlusion in brightly lit areas, with
respect to the current sampling direction ω. As we did not normalize Ll(ω, P),
we combine the influence of multiple lights on the local occlusion.

With the combination of depth- and light-based attenuation, the weight-
ing function is able to emphasize local detail and their spatial relation as well
as global structures without overemphasizing their shadowing effect (cf. Fig-
ure 8.4). The depth-based attenuation seamlessly scales between local and
global structures and, therefore, allows LineAO to create an AO-like effect
for dense line renderings on multiple scales. The inclusion of light intensities
ensures high visibility of local detail in otherwise occluded areas if they are
directly lit.

LineAO Parameter Summary

In Equation (8.7), we introduced three parameters. In this section we have
a closer look on these parameters, specific meaning, and their recommended
values to achieve optimal results. Please note, that we have used these values
for all images in this paper.

• sr = 3 – the number of radii to evaluate. This defines how many hemi-
spheres are sampled around each pixel. The higher this value, the more
detail influence the global AO effect. Evaluation at three radii ensures
that detail in line bundles are rendered properly as well as smooth shad-
ows of distant occluders. Higher values increase the total influence of
smaller structures on the global AO effect. Lower values reduce visual

160 Chapter 8. LineAO

quality, since many mid-range structures cannot be detected. Due to
Equation (8.12), sr needs to be larger than one.

• sh = 32 – the maximum number of samples on the hemisphere for each
of the sr iterations in LineAO. As we decrease the number of samples for
increasing hemisphere radii as a harmonic series, the value of sh defines
the overall quality of the rendering with a trade-off regarding render
speed. In Section 8.4.1, we show several values of sh in comparison.
We found that 32 is the best trade-off between quality and speed, since
higher values effect quality only marginally. According to Equation (8.7),
s = 32 and sr = 3 yields in 59 samples being taken at each pixel.

• r0 = 1.5 times the line width – the minimum radius. This radius defines
the smallest hemisphere for sampling near occluders. This value defines
how much local detail is incorporated into the global AO effect. To
handle all local detail properly, this value needs to be close to the line
width, defined by the rendering system. We chose 1.5 times the line
width here, which ensures all local detail are preserved.

8.3.3 Combining LineAO with other Methods

The LineAO approach can be easily combined with other approaches. When
used with illuminated lines (introduced by Mallo et al. [117]), an additional
shape cue is added: the specular highlight. This can be seen in Figure 8.5(b).
As LineAO already represents the diffuse and ambient reflection, it is enough to
additively combine the specular term of the illuminated lines approach with the
LineAO intensity. When combining local illumination multiplicatively instead,
an overly strong suppression of diffuse light will occur and local details might
get invisible.

Besides illuminated lines, tube rendering is another interesting and com-
monly used alternative. In contrast to line renderings, tubes have a thickness
in camera space and in screen space. Thus, we need to incorporate this in
the parameter r0 and the radius scaling term in Equation (8.7). We can now
define the local neighbourhood using a radius larger than the tube width to
ensure that the current tube is not occluding itself. We, therefore, define a
new initial radius to replace r0 in Equation (8.7) of Section 8.3.1 as

rtubes
0 (P) = 1.5 · ts. (8.17)

8.3. Method 161

(a) LineAO on Tubes

(b) LineAO using Illuminated Lines

Figure 8.5: LineAO in combination with tube rendering (a) and illuminated lines
(b). This yields additional cues for the shape of the line data and provides additional
local structure detail. A downside of combining LineAO with local illumination can be
the suppression of local details due to the partially small diffuse reflection on curved
surfaces. A possible solution is to use the specular portion of the local illumination
model only, especially since LineAO already includes diffuse reflection in its light-
based obscurance weight (cf. Equation (8.16)). The result can be seen in Figure 8.7.

162 Chapter 8. LineAO

Figure 8.6: The rendering pipeline. This figure shows the flow of information
through the different rendering passes (blue boxes). The Line and Tangent data is
provided by the application and uploaded to the GPU, where it is rendered to the
ND-map, colormap and zoom-map. The ND-map additionally gets processed by the
GPU to create the needed sr Gauss levels using mipmapping. The final rendering
pass then applies the LineAO algorithm on a per-pixel basis and renders it to the
screen.

Additionally, we keep the radius scaling scheme for tubes. This might
sound a bit counter-intuitive, but yields smoother shadows for global bundles.
This is caused by the fact that tubes are not overly thick and the rendered
scene has the same density properties as a scene rendered using line primitives.
Figure 8.5(a) shows the combination of LineAO with tube rendering [128].

LineAO is very flexible and allows combination with other lighting and
shading schemes. Therefore, LineAO can be combined with any other line
rendering methods easily.

8.3.4 Implementation

In the previous sections, we introduced our LineAO approach theoretically. In
Sections 6.2 and 8.3.2, we gave an overview on how screen space approaches
work in general and which specific information LineAO needs beforehand.

In this section, we provide an implementation guideline using OpenGL and
GLSL. The implementation in OpenGL is straight forward. We need frame
buffer objects to render the scene to several output textures instead of the
screen. These output textures contain the scene itself and the required LineAO
inputs, like a normal at each pixel for the represented line. The LineAO pass
then renders a screen-filling quad and uses the LineAO fragment shader to
evaluate Equation (8.7) for each pixel visible on screen. Figure 8.6 shows our
specific LineAO rendering pipeline, the two needed render passes, and the flow
of data between the them.

8.3. Method 163

Pass 1: Render To Texture

We start by transferring the line data, including the tangent vector at each
vertex, to the GPU using the standard OpenGL pipeline. In fact, this means
rendering the scene. Although the tangent vector can also be described by the
start and end vertex of each line segment, we have to transfer it separately
as the vertex shader of the first pass has no access to the other vertices of
a primitive. An alternative to uploading the tangents is to use a geometry
shader, which has access to the vertices of each line segment.

The Colormap The first pass now renders and colors the lines as usual. As
we use frame buffer objects (FBO), the first pass is able to render these lines to
a texture instead of the visible framebuffer. This creates a texture containing
the plain rendered lines, including their coloring. For further reference, we call
it colormap.

ND-map As LineAO requires normals for all visible lines, we utilize the frag-
ment shader of the first pass to calculate these normals. The fragment shader
can utilize the tangent that has been interpolated for the current fragment au-
tomatically by the GPU. The tangent T and the camera vector C then define
a normal for the current fragment P as n0(P) = T×C

|T×C| × T . This calculation
has been explained in Section 8.3.2. The normal is stored in the RGB-triple
of the second output texture called ND-map.

Besides the normal, LineAO needs a linear depth value for each pixel it
processes. The GPU does this automatically, but scales it by the homogeniza-
tion factor 1

w
. As GLSL provides the projected coordinates of each fragment

P in gl FragCoord, it is trivial to get a linear depth d0(P) = P.z · P.w and
storing it in the alpha channel of the ND-map.

Zoom-map Finally, the zoom level z can be calculated. We already intro-
duced this calculation in Equation (8.8), but used some kind of a place-holder
matrix MCP to represent the view and projection setup of the used rendering
setup. In OpenWalnut, we zoom the scene by scaling the OpenGL modelview
matrix MModelV iew. The orthographic projection matrix MP is left untouched
and contains only the scaling to the clip coordinate system and no perspec-

164 Chapter 8. LineAO

tive scaling. As we use an unit vector whose w coordinate is 0, perspective
projection matrices work equally well. The zoom level is then defined as

z = |MPMModelV iew(1, 0, 0, 0)T |. (8.18)

The zoom level is written to a floating point texture, called zoom-map.

Pass 2: LineAO

After the first rendering pass, only the unfiltered ND-map is available. From
Equation (8.7), one can see that we need sr − 1 filtered versions of this map.
To build this Gaussian pyramid automatically, we enable mipmapping for this
texture. In OpenGL, this can be achieved by setting the ND-map’s texture
min-filter to enable mimap generation via glTexParameteri(GL TEXTURE 2D,
GL TEXTURE MIN FILTER, GL LINEAR MIPMAP LINEAR).

With this, the second render pass has given everything needed for LineAO.
Typically, the second render pass is done using a screen-filling quad with all
the above output textures bound to it. This way, OpenGL calls the LineAO
fragment shader for each pixel of the originally rendered scene of the first pass.
As we also disabled the FBO now, the results get rendered directly onto the
screen.

The LineAO fragment program is now applied to each pixel and evaluates
Equation (8.7). The implementation is straight forward and can be done by a
nested for-loop in GLSL. As the LineAO parameters sr, sh, and r0 are compile-
time constants, the GLSL compiler unrolls the loops and creates optimized
GPU code.

Sampling To avoid artifacts while sampling the hemisphere, we use a Monte
Carlo sampling method. To achieve this, we create a low resolution, ran-
dom vector map R(P) on the CPU and tile it on the quad to avoid up-
sampling in the LineAO pass. We query two random vectors R1 = R(P)
and R2 = R(i

s
, j
sr−1) for the current pixel P . The vector R2 is queried at

(i
s
, j
sr−1), which is a point in the texture space, depending on current level and

sample, according to Equations (8.6) and (8.7). The sampling vector ωi is then
defined to be the random vector R1 reflected along R2. This avoids that the
sampling vector ωi is the same on different levels l of the LineAO equation and
thus, avoids sampling in the same direction multiple times.

8.4. Results 165

Boundary Cases An important point to mention here is the proper handling
of boundary cases, e.g., if P +rω (Equation (8.4)) is outside the texture space.
A simple approximation to handle this is by reflecting the vector ~ω on the
normal nl(P). Unfortunately, this causes over-estimation if the area around
the border is salient compared to the invisible area and under-estimation in the
opposite case. An alternative solution is to render the scene slightly larger than
the viewport. But to provide the invisible but needed information for global
occluders, the invisible area needs to be impractically large. We decided to
ignore samples outside the texture space. This creates a coherent LineAO
effect at the borders without the risk of overestimation.

With this guideline, one is able to implement LineAO completely on the
GPU. LineAO perfectly fits into the standard graphics pipeline and runs on
consumer-level hardware. The source codes are available in OpenWalnut (see
Chapter 3 for details or online at www.openwalnut.org).

8.4 Results

In the previous section, we have introduced our approach for improved shad-
ing and illumination of dense line data. Our LineAO approach modifies and
extends standard AO and SSAO, making it comply to the requirements and
properties of line data. It phenomenologically creates the ambient occlusion
effect, generating a more realistic image in real-time with greatly increased
spatial perceptibility.

Figures 8.7 and 8.8 show the streamlines around the two main vortices of
a delta wing dataset obtained from a fluid dynamics simulation. Especially
Figure 8.7(a) does not provide any cues that allow derivation of streamline
structure and depth. Our method adds these missing cues and depicts the
folding around the main vortices much better.

Figure 8.9 shows a fiber tractography dataset of realistic size (74 313 lines
containing a total of 11 000 000 vertices). This particular image was published
in LeMonde “20012: la science en images” [P10] in 2012. Figure 8.10 com-
pares this LineAO rendered image with illuminated lines rendering, standard
SSAO from Crytec [131], and ray-tracing using the ray-tracer package POV-
Ray [208]. Although the plain illuminated line rendering does not provide
any spatial cues and only little shape hint due to local specular highlights,
it is still the standard way of exploring large medical data like this. Only
interaction can reveal further structural information. Figure 8.10(b) shows

www.openwalnut.org

166 Chapter 8. LineAO

(a) Phong illuminated lines

(b) LineAO with Phong illumination

Figure 8.7: Streamlines around the main vortices of a delta wing dataset obtained
from a fluid dynamics simulation. (a) The specular highlights provide local shape
information but are not able to properly represent the folding around the vortices.
(b) LineAO enormously improves the perception of these folding structures.

8.4. Results 167

Figure 8.8: The streamlines around the main vortices of a delta wing as in Fig-
ure 8.7. LineAO works properly with solid geometry and can be combined easily
with other shading methods for surrounding and embedded objects. This image was
published in the gallery of fluid motion [P11] in 2012.

a standard SSAO algorithm applied to the same line data. Although it re-
veals some global structure with a halo effect, the technique generally is not
suited for line data. This can be seen in the under-estimated thin structures
on top of the image as well as on the over-estimated fissures of the Frontal
Lobe. Increasing the number of samples in SSAO does not solve this problem,
as it is still not able to distinguish local and distant occluders properly. For
comparison, we also rendered a ray-traced image, with POV-Ray’s radiosity
approach enabled. As it is not possible to ray-trace lines per se, we have used
thin, arithmetically described cylinders with spheres as joints to describe the
line strips. Besides the enormous calculation time of 14 hours, the POV-Ray
renderer suffers the problem of intense self-shadowing in dense areas, causing
overlapping and dense bundles to be undistinguishable. With LineAO, it is
possible to distinguish individual lines and bundles as well as their layering
even without interaction. It is possible to see the structure of the fissures in
the Frontal Lobe and the layering of bundles in the brain stem.

168 Chapter 8. LineAO

Figure 8.9: Deterministic fiber tracking of the human brain, similar to Figure 8.10.
This image was published 2012 by LeMonde in the gallery “20012: la science en im-
ages” [P10]. A similar image is on the front cover of the UC San Diego’s Discoveries
Magazine 2014 [P12].

8.4. Results 169

(a) Illuminated Lines [117] (b) SSAO [131]

(c) Ray-traced using POV-Ray (d) LineAO with Phong illumination

Figure 8.10: Comparison of different line rendering approaches with a deterministic
fiber tracking of the human brain. The fibers are colored using the tangent-based
directional colormap [145], which is very common in the neurosciences. A prominent
example for comparing each technique is the layering of bundles at the brain stem,
where the Pons and Medulla Oblongata pass into the Spinal Cord. In comparison to
(a),(b), and (c), LineAO (d) is able to show the local structure of fibers in a bundle,
as well as their spatial relation in a global scope, without intense self-shadowing in
dense and overlapping areas. Besides ray-tracing, all methods perform in real-time.
(c) took 14h to compute.

170 Chapter 8. LineAO

(a) Illuminated tubes

(b) LineAO with Phong illuminated tubes

Figure 8.11: This picture shows the combination of local illumination, tubes, and
LineAO in a part of the Corpus Callosum (red), Cingulum (green), and Corti-
cospinal tract (blue). The illuminated tubes already provide some structural infor-
mation for each line but make it hard to distinguish individual lines. Their spatial
relation is not completely visible. For example, the shape of the Corticospinal Tract
(blue) is not fully determined with illuminated tubes and seems to be a round bun-
dle. With LineAO, it is immediately clear that this tract has a flat shape. Besides
this, its distance to the Corpus Callosum (red) cannot be estimated with illuminated
tubes, whereas LineAO reveals their closeness.

8.4. Results 171

(a) s = 8 — 63FPS (b) s = 32 — 37FPS (c) s = 64 — 24FPS

Figure 8.12: Top view of the delta wing vortices, zoomed into the part framed in
Figure 8.7 to show quality difference between the different sample counts. (a) Con-
tains a lot of noise artifacts compared to (b), whereas the visual difference between
(b) and (c) is insignificant.

In Figure 8.11 a selected part of a brain fiber tractography dataset is shown.
The LineAO approach in combination with tube rendering shows spatial rela-
tions of these bundles in a very natural way. Even distinguishing a single fiber
in a bundle is possible. Without LineAO, estimation of vicinity between these
three selected bundles is difficult and bundle shape can only be recognized with
interaction. For example, the closeness of the Corpus Callosum (red) and the
Corticospinal Tract (blue) can be seen very clearly with LineAO, whereas Fig-
ure 8.11(a) provides no visual cue regarding this. Only anatomic knowledge
and interaction with the scene helps to grasp the relevant spatial information.

8.4.1 Performance and Accuracy

In Section 8.3.2, we listed the parameters and our default settings. We have
used these values for rendering all images throughout the paper. Thereby, the
sampling count s influences the overall rendering performance and a trade-
off between accuracy and performance has to be done. Figure 8.12 compares
a drastically zoomed part of the delta wing vortices dataset, rendered with
different sample counts. It clearly shows that sample counts lower than 32
introduce significant noise artifacts, whereas values above 32 only slightly im-
prove rendering quality while diminishing rendering performance drastically.

172 Chapter 8. LineAO

Figure Line strips Vertices FPS
Phong

FPS
SSAO

FPS
LineAO

8.5(b) 1 000 1 000 000 460 59 37

8.5(a) 1 000 1 000 000 140 42 17

8.7 1 000 3 600 000 260 55 20

8.10(d) 74 313 11 000 000 30 22 16

8.11 564 102 700 500 80 30

Table 8.1: Performance of LineAO for several datasets in comparison to plain
Phong illuminated lines and SSAO [131].

To measure LineAO performance, we used a machine with two Quad-Core
AMD Opteron 2352 processors, 32GB RAM, and a GeForce GTX480 graphics
card. However, the CPU and RAM do not play an important role here since
the computation is done on the GPU only. Table 8.1 compares the frames per
second (FPS) of LineAO with plain Phong illumination at a screen resolution
of 1280 × 1024 pixel and clearly shows that LineAO works in real-time on
todays lower to medium-level consumer graphics hardware (2014).

With this, it is evident that Phong illumination is data-bound, whereas
LineAO and SSAO mainly depend on the number of pixels covered by the
rendered lines. Phong is evaluated for each fragment instead of each pixel,
as LineAO does. This explains why larger dataset sizes do not have a drastic
impact on FPS for the additional LineAO pass, compared to Phong illuminated
lines.

8.5 Discussion

8.5.1 Limitations and Problems

This section is about four major issues associated with LineAO. Although the
first three issues are not imposed by LineAO, they affect it in a general way.
Hence, we explain these issues and show possible solutions to avoid or alleviate
them.

Density

The main limitation of LineAO is that it does not provide improved shading
for very coarse data. In our case, dense line structures provide a high occlusion

8.5. Discussion 173

inside the bundles and smooth shadows for salient structures. Very coarse lines
and thin structures naturally do not cause much occlusion. However, this is
what one would expect naturally. But it might be desired in some case to
have improved shading, even if the line data density is not high enough. In
those cases, line structures have to be thickened. A good option to achieve this
is to use a fast tube rendering techniques, like the one introduced by Merhof
et al. [128]. We have used their approach to overcome the density problem in
Figure 8.11(b).

Defining a Minimal Density

The above limitation rises the question whether a minimal density can be
defined. Lines have a certain width on screen in computer graphics. This width
is fixed and independent from any scaling of the scene or the line primitive.
This was the reason for introducing the zoom level z in the term r0z · (j2 + j)
of Equation (8.7), Section 8.3.1. It copes with the problem of decreasing line
density on screen when zooming in, but also introduces the dependency on the
current camera/view/projection setup. This would allow to define a minimal
screen space line density in dependence on the current camera/view/projection.

Unfortunately, this is of no value for defining a density in eye space for
two reasons: (1) the projection from eye space to screen space is not uniquely
invertible and (2) the intrinsic fixed line width on screen is not related to
any size-measure in eye space. Figuratively speaking, dense line bundles in
eye space might be projected to a single pixel or spread on the whole screen
as thin lines with huge gaps in between. In other words, defining a minimal
density of lines per volume is not feasible.

Self-Occlusion

Another, but general problem is the self-occlusion problem. Although this
is no issue specifically related to LineAO, it affects it. LineAO might even
intensify the problem to a certain degree, as it shades areas that would be
visible otherwise.

Specifically for line data, there are several possible solutions. Akers et al.
[2] introduced a method to interactively filter large line datasets using regions
of interest. This way, occluding parts of the data can be removed manually. An
alternative approach is to automatically filter line data using known structures
as regions of interest. In Chapter 4, we have demonstrated this using known

174 Chapter 8. LineAO

anatomical regions in the human brain. Other methods automatically remove
or blend out lines that do not contribute to the understanding of the data [66,
119].

When combining LineAO with one of these methods, it is possible to re-
duce visual clutter and self-occlusion, while retaining spatial and structural
perceptibility of the line data. This was also stated by Günther et al. [66].

Global GPU Memory Access

This is a rather technical issue of LineAO in the context of the current GPU
memory architecture. When reviewing the sampling radius term r0z ·(j2 +j) of
Equation (8.7), Section 8.3.1 again, it gets obvious that it can grow drastically,
depending on the amount of hemispheres (increasing j) and zoom level. This
is intended and is for capturing global structures in the scene.

From a purely theoretical point of view, there is nothing to argue against
it. When implementing LineAO on modern GPU architecture, huge sampling
radii, which might cover large parts of the texture space, are indeed an issue to
keep in mind. The GPU consists of shader units, which then run the different
shaders. In our case, the LineAO fragment shader, which processes a specific
pixel of the input textures. Each unit has a small, local memory. The GPU
populates this with data of the currently bound textures for the specific area
the shader is processing. This way, each shader can access local data in the
textures very fast. On a higher level, these shaders are organized in groups.
These groups have their own group-shared memory, usually working as global
memory cache. In other words, the memory model of the GPU is designed for
very local operation.

In the context of LineAO, this means that the global sampling is somewhat
contradictory to the local data model of the GPU. The Monte-Carlo sampling
of large texture areas creates a lot cache misses in the shader-local and group
memory. This causes long wait cycles for the whole group to re-populate the
memory, as the global, shared memory access time is tremendously higher.
This is especially true, when considering the fact that a lot of groups will have
cache misses at the same time, causing a lot of synchronization waits. In turn,
this leads to the assumption that a major share of the LineAO calculation time
is caused by global memory access. This assumption is backed up in two ways:

1. We used a very small r0 to ensure that the sampling radius is small and
always stays inside the locally cached part of the input textures. While
increasing r0, we found that there are certain values for r0 where the

8.5. Discussion 175

frame rate suddenly changes. To be precise, we found three values for
r0 as we use three hemispheres. Every time a hemisphere gets larger
than the cached texture area, the frame rate suddenly drops, while it
was nearly constant for values in between. The exact values are of no
interest here, since they depend on

• the zoom level z;
• the GPU architecture and the caching strategies;
• and the GPU’s local memory sizes.

2. We used a modern graphics card: the NVIDIA GeForce GTX Titan. In
contrast to the originally used GTX 480, this card has 2688 processing
cores instead of 448. This is six times the computational power apart
from increased clock speeds, memory speeds, and memory bandwidths.
Interestingly, the frame rate of LineAO only doubled for the above ex-
amples. The doubling of the frame rate probably relates to the dou-
bled memory clock and the increased memory bandwidth of the GeForce
Titan, which compensates the increased number of cores waiting for data.

In general, proving or measuring this is hard. The hardware details, internal
structures, the core-assignment, and the caching strategies are not known to
the public. Although OpenGL profiling systems exists, they are not able to
provide useful information on excessive global memory access and related wait
times on a sufficient level of detail.

When considering Table 8.1, it gets clear that this is no critical performance
issue. But it should be considered an issue, when using a very high resolution
for rendering. This way, even the hemisphere used for local occluders tends to
get larger than the local shader memory.

8.5.2 Future Work

Other Methods: A major direction for further research is to combine LineAO
with other line rendering techniques. An example is the halo-based tech-
niques of Everts et al. [52], which is able to provide depth cues for coarse line
structures. To tackle the self-occlusion problem, another option is to combine
LineAO with opacity optimization algorithms [66].

Other Types: Another very interesting direction for further research is about
the application of LineAO with other types of data, i.e. points or complex

176 Chapter 8. LineAO

triangle meshes. In 2013, we already explored the possibilities of LineAO for
point-based data. The next chapter will introduce this extension in detail.
Additionally, using LineAO with triangle meshes yielded promising results,
but required some further tweaking of the weighting functions. For example,
we used LineAO in Chapter 5 for Figure 5.3. The advantage of LineAO over
several standard SSAO approaches is the same as for lines: it emphasizes local
details and spatial relations at once.

Sampling Scheme: Another major goal is to adaptively sample the occlusion
integral, depending on density information. This could replace the Monte-
Carlo sampling scheme and might provide more accurate shading, especially
for global occluders. A possible way to achieve this is to estimate the density
of lines in screen space, by using an additional precomputation step. This
step could calculate a map of dense and less dense areas for a given view –
interestingly, this is what LineAO basically does. When combining this with a
map of already sampled pixels, LineAO would be able to achieve a very high
sampling resolution over multiple frames by re-using the previous samples and
focusing on high-density areas. This would furthermore increase smoothness
and accuracy of the shading.

8.6 Conclusion

With current line rendering methods, it is not sufficiently possible to distin-
guish associated bundles of lines and their spatial relation to others locally
and globally. Thus, we proposed a novel approach, tailored towards line ren-
dering. It allows to grasp the structure of bundles and the spatial rela-
tion between structures at local and global scope. The combination with
directed local illumination adds further perceptual cues for the local charac-
teristics of single lines and line bundles. Its simplicity and performance
distinguishes it from other approaches, which use complex, surface-based tech-
niques or expensive precalculations to provide insight into structures. Our
presented method does not require any precomputation and does not
introduce additional geometry for each line segment. The real-time ability,
its consistency under modification and interaction, and the possibility
of combining LineAO with other interactive methods allows it to be used as
add-on to existing approaches in interactive and explorative visualization
environments.

8.6. Conclusion 177

Our approach is a considerable step towards visual quality, spatial percep-
tion, and usefulness of line-based visualization techniques and perfectly fits
into the constraints of modern, interactive data exploration and visualization
environments.

178 Chapter 8. LineAO

179

9
PointAO – Improved Ambient

Occlusion for Point-based
Visualization

This chapter is based on the following publication:

[P13] – S. EICHELBAUM, G. SCHEUERMANN, and M.
HLAWITSCHKA. PointAO – Improved Ambient Occlu-
sion for Point-based Visualization. EuroVis - Short Pa-
pers. Ed. by M. Hlawitschka and T. Weinkauf. 2013, 13–
17
Online: http://sebastian-eichelbaum.de/pub13b

http://sebastian-eichelbaum.de/pub13b

180 Chapter 9. PointAO

9.1 Overview

The Data: Points In many fields of science, the visualization of large amounts
of particles, glyphs and point-based data plays an important role. Typically,
these points and particles have a direct physical meaning and there is a huge
variety of applications, where point data is used.

Generally, the term “point-based data” can be understood in two ways.

1. as an unordered cloud of points, where the positional information is
of relevance. Typical examples include molecular simulations, protein
structures, and spatial laser scans. In these examples, the spatial ar-
rangement of single atoms, molecules, and laser samples is crucial to
understanding the data.

2. as data associated with a point, where the measured or simulated in-
formation is associated with points. These points are usually, but not
necessarily arranged in a lattice. Typical examples include magnet res-
onance imaging (MRI), diffusion tensor imaging (DTI), high angular-
resolution diffusion (HARDI), physical and mechanical simulations, and
much more. In general, one could say that this interpretation includes
nearly all measurement and sampling techniques.

Of cause, this list is not exhausting. It gives an overview on how important
point-based data is in many fields of science and application. The proper
perception of the global spatial relations and local structure are crucial to
understand this particular kind of data and the underlying models.

Visualization of Point-based Data In the context of PointAO, we focus on
discrete visualizations of point-based data. Instead of representing a contin-
uum, the points of the dataset can be visualized directly with glyphs. Glyphs
allow for direct visualization of positional information and associated informa-
tion and do not need any reconstruction step to re-create a continuous domain,
like [4] or [97]. They can capture both cases mentioned in the previous chapter.
Basic representations are spheres, but more-complex objects can describe more
properties of the associated data they represent. With the vanishing memory
restrictions and the increasing data throughput, unstructured point data be-
comes more and more popular and the possibility for direct visualization of
point data often leads to a good first impression of it.

Especially in the area of medical visualisation, a lot of different glyphs are
available, depending on the imaging modality used. Some commonly known

9.1. Overview 181

examples for second-order tensors are super-quadric glyphs by Kindlmann [92]
or tensor splats by Benger and Hege [13]. For visualization of higher order
tensors and HARDI data, other types of glyphs [149, 178] were introduced.
This is only a small list of examples. As PointAO does not rely on a specific
type of glyph or a specific kind of imaging modality, simulation model or use
case, we refer the reader to a survey on glyph-based visualization by Ropinski
et al. [161] for further details.

Besides glyph-based rendering, other researchers use splats and screen-
space processing to create the visual effect of solid surfaces in the point data,
namely Rosenthal and Linsen [162] and Rusinkiewicz and Levoy [168]. Dobrev
et al. [45] have added shadows to their point cloud rendering to improve the
realism of the resulting images.

In the area of molecular visualization, proper shading for improved spatial
perception is known to be important. Several methods for visualizing molecular
structures were published recently that deal with ambient occlusion [65, 201]
and illustrative rendering [239].

The Problem It is known that global lighting effects are very important for de-
termining an object’s position and spatial relations [103, 155, 214, 215]. Hence,
global illumination became popular in recent years, especially in molecular data
visualization. Unfortunately, these methods often suffer several limitations like
immense precalculation costs, reduced accuracy due to needed simplifications,
or limitations towards the simultaneous shading of local and global detail.

For point-based visualization, ambient occlusion is not yet sufficiently re-
searched. Although the application of standard SSAO approaches like Crytek
SSAO [131] improves spatial perception in dense glyph renderings to a cer-
tain degree, they fail to emphasize the shape of the glyphs/splats/points. But
especially with higher-order glyphs, the shape of the glyph is of crucial interest.

Our Solution: PointAO In this chapter, we improve the LineAO method of
the last chapter. It was tailored to the specific problems in line rendering
and its global illumination and shading. We contribute an enhanced screen
space ambient occlusion approach for point and glyph visualization, which
overcomes the before-mentioned problems and provides a greatly improved
structural and spatial perception with simultaneous depiction of
local shape and global structures in real-time, without precompu-
tation. PointAO can be applied to any kind of glyph-based and point-based
visualization, independent of the specific source, modality, and physical mean-

182 Chapter 9. PointAO

Figure 9.1: DTI super-quadric glyphs [92] rendered on three orthogonal slices
through the brain. The Phong shaded glyphs on the left do not provide any spa-
tial relation between them. With PointAO on the right, the spatial relations of the
glyphs on the three slices gets obvious. This was not possible before and the fact
that PointAO works in real-time, without any precomputations, makes it a perfect
addition to nearly every point- and glyph-based visualization approach.

ing of the data. In the remainder of this chapter, we refer to all the different
kinds of three-dimensional point data simply as point data.

In the next sections, we shortly recap the important ideas of LineAO and
introduce the necessary changes to improve the visualization of point data. The
chapter closes with several resulting images, showing PointAO in the context
of several application cases and types of point data.

9.2 Background

The very foundation of each ambient occlusion technique is the discrete de-
scription of ambient light that does not reach the point P on a surface with
normal n due to occlusion. When all objects are opaque, we only need to know

9.2. Background 183

the amount of light being occluded on a hemisphere around P in direction of
n. This yields the standard, discrete AO equation (cf. Equation (8.3)),

AOs(P, n) = 1
s

s∑
i=1

(1− V (ωi, P))〈ωi, n〉, (9.1)

which approximates the ambient occlusion factor at a point of a surface by
sampling the surroundings of P hemispherically. ωi is one of the well chosen
s hemispherical direction samples taken into account. The computationally
most expensive part is the function V (ωi, P), which describes whether the am-
bient light is reaching P from direction ωi. Most SSAO approaches, including
LineAO, render the scene, the normal information and depth information for
each pixel into a texture. Evaluation of V is then done by sampling around
a pixel P and checking whether the sampled pixel is to the front or to the
back of P , by comparing the previously saved depth buffer of the scene. If
it is in front, it occludes light. Depending on the number of samples s and
the distribution of the sampling directions ωi, this can lead to severe artifacts,
missed occluders, and makes the result dependent on the scaling of the scene
and the sampling distance.

The key element of LineAO is that it computes an average of the AO factors
for multiple hemisphere radii. It increases the radius in each distance-level j,
while reducing the number of samples on outer shells. Additionally, it modifies
the sampling radius depending on the current zoom of the scene to stay con-
sistent and weights the visibility function V by a factor g, which depends on
the depth-distance, distance-level, and light properties of the occluder. This
led to the LineAO Equations (8.6) and (8.7):

AOs,l(P, r) =1
s

s∑
i=1

[(1− Vl(rωi, P))gl(rωi, P)] (9.2)

LineAOsr,sh,r0(P) =
sr−1∑
j=0

AO sh
j+1 ,j

(P, r0z · (j2 + j)). (9.3)

The only parameters sr, sh, and r0 were described in the LineAO parameter
summary at Section 8.3.2. They represent the number of hemispheres (sr), the
number of samples per hemisphere (sh), and the smallest sampling radius (r0).

184 Chapter 9. PointAO

9.3 Method

To achieve the effects of LineAO for glyph rendering, we need to change three
parts of the original algorithm.

Sampling Scheme. As shown above, LineAO reduces the amount of samples
taken into account for each, increasing hemisphere. This can be done since the
algorithm uses a Gaussian pyramid for depth- and normal-maps. Thick, more
distant bundles merge to single objects in higher levels of the pyramid, thus,
reducing the probability to miss them during sampling. This is not the case
for glyphs and points. Even dense areas might contain a lot of holes, which do
not quickly vanish in higher Gauss-pyramid levels. Hence, there is a need for
more samples, even for distant occluders. To achieve this, we change the term
sh

j+1 in Equation (9.3), which defines the decreasing number of samples used in
Equation (9.2) to sh. In other words, PointAO does not decrease the number
of samples per hemisphere, but always uses sh samples. This ensures a better
sampling of distant occluders in point data.

Radius Scaling. The original algorithm as published in 2013 increased the
radius linearly using r0 +jz(P), where r0 is a predefined minimal radius, j ≥ 0
the current hemisphere, and z(P) a function denoting the zoom of the scene.
In Chapter 8 we already changed this to the improved version r0z · (j2 + j), as
shown in Equation (8.7) and Equation (9.3) respectively.

In PointAO, we use 1
1−dj(P) · z(P) · (j2 + j · r0) as the radius parameter for

each hemisphere, where dj(P) is the depth of the pixel P with d being 1 at
the far clipping plane and 0 at the front. The term 1

1−dj(P) causes pixels to
the front to use a smaller radius, thus, containing more local detail, whereas
pixels further back are influenced more by distant occluders. This creates a
crisp shading at prominent glyphs in front and a smooth shadow on glyphs in
the back.

Weighting function. Finally, we modified the weighting function gl(ω, P)
from Equation (8.10), which weights the occluder influence on P for a given
sampling direction ω at a certain distance-level l. It was a combination of
depth-based weighting and light-based weighting. The light-based weighting
benefits from the fact that bundles of lines merge to surface-like objects with
useful normals on them for increasing distance-level. Due to their shape,
spherical glyphs scatter the light too much, causing it to be over-estimated

9.4. Results 185

in LineAO. Instead, we combine the depth-based weight with 〈ω, nl(P)〉, as in
Equation (9.1) to better retain the glyphs shape in the shading. This yields

gl(ω, P) = gdepthl (ω, P) · 〈ω, nl(P)〉. (9.4)

as the weighting function for occluders in PointAO, where gdepthl (ω, P) is the
same depth-based weight as in LineAO (cf. Equation (8.13)).

Implementation We have implemented PointAO the same way as LineAO.
This was described in Section 8.3.4. The above mentioned changes were incor-
porated in the LineAO fragment shader. Everything else was left untouched.
The source codes are available in OpenWalnut (see Chapter 3 for details or
online at www.openwalnut.org).

9.4 Results

To demonstrate our technique, we apply the PointAO rendering to four types
of data. We compare our method to the well known and widely-used Crytek
SSAO [131] approach and Blinn-Phong shaded [18] spherical glyphs. The
performance measures were taken on a GeForce GTX 480, a lower to medium-
level consumer graphics card (2014). We are using FullHD resolution and
naive rendering, without any optimization towards occlusion-culling or similar
geometry reduction techniques. Table 9.1 summarizes the shown examples and
their frame rates for the different rendering techniques.

DTI Super-Quadric Glyphs. Figure 9.1 shows a comparison of Phong shaded
super-quadric glyphs [92], rendered purely on the GPU [76]. The rendering
shows three orthogonal slices through a DTI second-order tensor dataset. Al-
though the glyphs are aligned in a regular grid and the glyphs do not contain
explicit spatial information, it is important to grasp the anatomical context
and structures contained in the data. PointAO’s improved rendering allows
to see the underlying anatomical details as well as the slices itself. The plain
Phong-rendered image did not unveil this information.

Argon Bubble. Figure 9.2 shows a cut through a cube of simulated argon
fluid, which contains an argon gas bubble. The simulation uses a truncated
Lennard-Jones pair [89] potential for the intermolecular repulsion and short-
range dispersive attraction. The standard Phong-shaded spherical glyphs allow

www.openwalnut.org

186 Chapter 9. PointAO

only to guess that there is a cavity inside the block. Although SSAO clearly
shows the cavity, it provides no further local detail due to the very large radius
needed. Our PointAO approach keeps the global spatial information and shows
the cavity but also unveils the flowing argon gas atoms, which are not clearly
visible in the other approaches.

Flow Particle Data. Figure 9.3 shows traced particles in the leading edge
vortices of an inclined delta wing at four different time steps. Tracers are
seeded on an initial plane (gray) and shown after different time intervals. The
simple glyph rendering does not provide any cue on the spatial structure of the
particles inside the vortex, nor does it provide any cue for estimating depth
distance between the different particle planes and the vortices. The difference
between the SSAO and PointAO renderings are rather subtle at a first glance.
The SSAO rendering provides a structural cue inside the vortices and a subtle
global shading between the planes. This is caused by the very solid-geometry
alike structure, the well chosen SSAO parameters, and an overemphasized AO
factor. Generally, SSAO is much more dependent on well chosen algorithm
parameters, which vary from dataset to dataset. Choosing a smaller radius for
SSAO would emphasize the particles inside the vortex, whereas a larger radius
would emphasize the spatial relation between the planes and the vortices as a
whole. With PointAO, we are able to emphasize local and global structure in
equal measure.

LIDAR Scan. Figure 9.4 shows light detection and ranging (LIDAR) data of
the Golden Gate Bride area. It is an imaging technique that acquires millions
of points on visible surfaces leading to a point-based reconstruction of objects
scanned. Instead of preprocessing the data to obtain surface meshes [4] or
rendering the data after assigning surface normals [97], we directly display
the point data. Especially in the chosen dataset, surface-based techniques
fail to provide sufficient representations of the bridge or the trees in front of
the bridge. Due to the sharp edges of the glyphs, the simple glyph rendering
already shows the basic structure of the Golden Gate bride area. The SSAO
rendering adds additional, very local shading details due to the chosen, small
sampling radius. This can be seen especially in the trees area. Our PointAO
approach provides these local shading details as well, but adds more global
shadows to the scene, e.g., the shadows between the groups of trees and below
the bridge, which are not directly visible in the SSAO image.

9.4. Results 187

(a) Phong Shading – 30 FPS

(b) SSAO – 19 FPS

(c) PointAO – 12 FPS

Figure 9.2: Cut through an Argon fluid with enclosed Argon gas bubble (3 529 344
particles). The standard Phong shaded rendering (a) indicates the gas bubble inside
but provides no further spatial information. With SSAO (b), one can clearly see the
cavity inside the fluid, but local structures are nearly invisible and the gas particles
inside the cavity can only be depicted clearly in the PointAO (c) rendering.

188 Chapter 9. PointAO

(a) Phong Shading – 73 FPS

(b) SSAO – 29 FPS

(c) PointAO – 20 FPS

Figure 9.3: 81 554 Particles flowing into the leading edge vortices of an inclined
delta wing. The differently colored slices describe different time steps in the data.
The SSAO rendering (b) already shows useful spatial information between the differ-
ent time slices, but to achieve this image, we had to put some effort into fine-tuning
the SSAO parameters. Still, the PointAO approach (c) yields much better distinc-
tion between the different particles at a local and a global scope without parameter-
fiddling.

9.4. Results 189

(a
)

Ph
on

g
Sh

ad
in

g
–

9F
PS

(b
)

SS
A

O
–

7F
PS

(c
)

Po
in

tA
O

–
5F

PS

Fi
gu

re
9.

4:
Li

gh
t

de
te

ct
io

n
an

d
ra

ng
in

g
(L

ID
A

R
)

sc
an

of
th

e
G

ol
de

n
G

at
e

br
id

ge
ar

ea
wi

th
14

61
49

01
sa

m
pl

e
po

in
ts

.
Si

m
ila

r
to

th
e

ab
ov

e
fig

ur
es

,o
nl

y
Po

in
tA

O
is

ab
le

to
re

pr
od

uc
e

a
pr

op
er

gl
ob

al
sh

ad
in

g
an

d
lo

ca
ls

ha
di

ng
.

T
hi

s
ca

n
be

se
en

at
th

e
sm

oo
th

sh
ad

ow
be

lo
w

th
e

br
id

ge
an

d
th

e
cr

is
p

de
ta

ils
in

th
e

tr
ee

s
in

fro
nt

of
th

e
br

id
ge

.

190 Chapter 9. PointAO

Figure Points/Glyphs FPS
Phong

FPS
SSAO

FPS
LineAO

9.1 Super-Quadric [92]: 82 203 64 22 18

9.2 Spherical: 3 529 344 30 19 12

9.3 Spherical: 81 554 73 29 20

9.4 Spherical: 14 614 901 9 7 5

Table 9.1: Performance of PointAO for several datasets in comparison to plain
Phong illuminated glyphs and SSAO [131].

Figure 9.5: Sampling artifacts on a glyph zoomed to screen size. Although the
artifacts are quite subtle, they are visible in the pattern of the shading. The effect
can be alleviated by increasing the amount of samples per hemisphere sh.

9.5 Discussion

9.5.1 Limitations and Problems

As PointAO is an extension to LineAO, it has the same limitations. A major
difference though, is that glyphs have a spatial extend and are affected by
zooming. They get larger when zooming in and their surfaces begin to show
the sampling pattern used. Figure 9.5 shows this effect. On small and thin
structures, this is not an issue. However, viewing single glyphs at these sizes
is a rather rare case and the visible sampling artifacts are not that strong.

9.5.2 Future Work

Similar to the previous section, PointAO shares its possible future research
directions with LineAO. Especially interesting for PointAO is, whether the
improved sampling scheme, indicated in Section 8.5.2, can make the specific
PointAO sampling scheme superfluous.

9.6. Conclusion 191

9.6 Conclusion

We have presented an improved version of the LineAO algorithm, which is
optimized towards real-time rendering of point-based data. It is able to
handle arbitrary types of glyphs and does not need any precomputa-
tion, thus, making it ideal for interactive exploration and filtering of data. It
allows simultaneous depiction of local and global spatial relations and
structure in the data, while being consistent under modification and
interaction. The possibility of combining PointAO with other interactive
methods allows it to be used as add-on to existing approaches in interac-
tive and explorative visualization environments.

LineAO as well as PointAO are a considerable step towards the improve-
ment of visualization with regard to visual quality, structural, and spatial
perception.

192 Chapter 9. PointAO

193

10
Thesis Conclusions

The importance of visualization in many areas of science cannot be disclaimed.
It is a very powerful tool to grasp and understand the structure of data from
a myriad of different sources. It allows for an effective conveyance of complex
data and enables quick qualitative and quantitative assessments. Visualization
can unveil structures and properties inside the data that statistical measures
cannot. One can see visualization as the interface between the data and the
human mind.

During my research, I intensively collaborated with neuroscientists and
learned that visualization is a very application-dependent science. In fact,
other scientists see visualization as a tool to support them in analyzing their
data, which is true, but falls short on the science behind this “tool”. Especially
in neuroscience, the number of actively used visualization techniques is rather
small. In my experience, this is not necessarily caused by the techniques being
unknown – instead, these techniques are simply

• not proven to be useful in the specific application area,

• too parameter-dependent and complicated,

• and often not available/accessible.

194 Chapter 10. Thesis Conclusions

Tackling this was the major goal of the first part of my thesis. We de-
veloped OpenWalnut to implement different common and novel visualization
techniques to make them available and accessible by neuroscientists. We pre-
sented a tool that was designed to be the common platform for us and our
neuroscientific collaborators. Today, it has reached a stable state and is used
by several groups for research in different areas, not only neuroscience. We
developed a novel visualization approach for functional neuroscience and, al-
though it certainly is not a new de-facto standard visualization technique,
it once more shows the importance of application-specific visualizations. It
helped the scientists to visually understand the anatomical meaning of the
formerly abstract models. Finally, we have evaluated some of the most well
known visualization techniques in the context of three neuroscientifically rel-
evant scenarios. We published this in one of the most important journals of
the neuroscience community to reach the real target community – neurosci-
entists. We have shown the possibilities of visualization and also made clear
that every method, every visualization has its limitations and advantages for
a certain task. This was not done before in the neuroscience community and
triggered the interest of several external groups on our work, visualization and
OpenWalnut.

Visualization is the combination of smart data processing and computer
graphics. The processing methods behind modern visualization get smarter,
faster, and better day by day. However, in my opinion and expressed with some
exaggeration, the graphical representation is often still at the level of the mid
’80s, when Silicon Graphics introduced their IRIS graphics workstation series.
The crux of this statement gets obvious, once looking at the possibilities of
modern computer graphics in comparison to the graphical outcome of today’s
visualization techniques. I am not saying that the graphics in visualization are
bad, but as a matter of fact, they do not exploit the whole spectrum of today’s
possibilities.

This was the reason for working on improvements of existing visualization
paradigms and techniques. The focus lied on the improvement of structural
perception, spatiality, and better visual detection of relations in the data.
This was furthermore fortified by our neuroscientist collaborators, stating that
three-dimensional visualization techniques are often of limited use, since they
do not provide the structural coherency with anatomy and context; not to
mention the missing spatial relationships.

195

We have shown that computer graphics techniques help to improve the
structural perceptibility on surfaces at the example of TensorMesh, represent-
ing a whole class of surface-based techniques. With LineAO and PointAO, we
continued to use the screen space paradigm to improve the spatial perception
in line and point data. We achieved to create a technique, able to represent
local and global structures in spatial relation to each other; in a very intuitive
and natural way. Especially for line data, this was not possible before.

Beside its scientific achievement, LineAO also attracted attention in the
press, simply because the rendered images are visually appealing. LineAO was
shown in LeMonde Science Online, 2012: la science en images [P10] and is on
the cover of the 2014 volume of the Discoveries Magazine, the UC San Diego
Health Sciences’ publication about their innovations in research, health care
and education [P12].

We showed that screen space postprocessing is a valuable tool to improve
existing rendering techniques. They do not only create “nice looking pictures”,
but also improve the value of visualization. Expressiveness of visualization is
not only defined by its smart data processing in the background, but also
by its graphical representation and how effective the graphical representation
transports information.

196 Chapter 10. Thesis Conclusions

197

List of Publications

List of my original publications as of December 8, 2014. The list is sorted by
appearance in the chapters of this thesis. The publications are available online
at http://www.sebastian-eichelbaum.de/publications.

[P1] S. EICHELBAUM, M. GOLDAU, S. PHILIPS, A. REICHENBACH, R.
SCHURADE, and A. WIEBEL. OpenWalnut: A New Tool for Multi-
modal Visualization of the Human Brain. EG VCBM 2010 Posters.
2010.

[P2] S. EICHELBAUM, M. HLAWITSCHKA, A. WIEBEL, and G. SCHEUER-
MANN. OpenWalnut - An Open-Source Visualization System. Pro-
ceedings of the 6th High-End Visualization Workshop. Ed. by W. Benger,
A. Gerndt, S. Su, W. Schoor, M. Koppitz, W. Kapferer, H.-P. Bischof, and
M. D. Pierro. 2010, 67–78.

[P3] S. EICHELBAUM, M. HLAWITSCHKA, and G. SCHEUERMANN.Open-
Walnut: An Open-Source Tool for Visualization of Medical and
Bio-Signal Data. Biomedical Engineering / Biomedizinische Technik. Ed.
by O. Dössel. 2013.

[P4] S. EICHELBAUM, A. WIEBEL, M. HLAWITSCHKA, A. ANWANDER,
T. KNÖSCHE, and G. SCHEUERMANN. Visualization of Effective
Connectivity of the Brain. Proceedings of the 15th International Work-
shop on Vision, Modeling and Visualization (VMV) Workshop 2010. Ed. by
R. Koch, A. Kolb, and C. Rezk-Salama. 2010, 155–162.

[P5] S. EICHELBAUM, M. DANNHAUER, M. HLAWITSCHKA, D. BROOKS,
T. R. KNÖSCHE, and G. SCHEUERMANN. Visualizing Simulated
Electrical Fields from Electroencephalography and Transcranial Elec-
tric Brain Stimulation: A Comparative Evaluation. NeuroImage 101
(2014), 513–530. ISSN: 1053-8119.

http://www.sebastian-eichelbaum.de/publications

198 List of Publications

[P6] S. EICHELBAUM, M. DANNHAUER, G. SCHEUERMANN, D. BROOKS,
T. R. KNÖSCHE, and M. HLAWITSCHKA. A Comparative Evaluation
of Electrical Field Visualization from EEG/tDCS. The 20th Annual
Meeting of the Organization for Human Brain Mapping (HBM), Poster
3029. 2014.

[P7] S. EICHELBAUM, M. HLAWITSCHKA, B. HAMANN, and G. SCHEUER-
MANN. Fabric-like Visualization of Tensor Field Data on Arbitrary
Surfaces in Image Space. New Developments in the Visualization and
Processing of Tensor Fields. Ed. by D. H. Laidlaw and A. Vilanova. Math-
ematics and Visualization. 2012, 71–92.

[P8] S. EICHELBAUM, M. HLAWITSCHKA, B. HAMANN, and G. SCHEUER-
MANN. Image-space Tensor Field Visualization Using a LIC-like
Method. Visualization in Medicine and Life Sciences 2. Ed. by L. Linsen,
B. Hamann, H. Hagen, and H.-C. Hege. Mathematics and Visualization.
2012, 193–210.

[P9] S. EICHELBAUM, M. HLAWITSCHKA, and G. SCHEUERMANN. LineAO
– Improved Three-Dimensional Line Rendering. IEEE Transactions on
Visualization and Computer Graphics 19.3 (2013), 433–445.

[P10] S. EICHELBAUM, M. HLAWITSCHKA, and G. SCHEUERMANN. Vue
en tractographie d’un cerveau humain. LeMonde Science Online, 2012:
la science en images. 2012.

[P11] S. EICHELBAUM, J. KASTEN, M. HLAWITSCHKA, G. SCHEUER-
MANN, and B. R. NOACK. Leading edge vortices of flow over a
delta wing. Gallery of Fluid Motion, Poster, P55. 2012.

[P12] S. EICHELBAUM, M. HLAWITSCHKA, and G. SCHEUERMANN. Cover
picture on Discoveries Magazine. Discoveries Magazine, Volume 5.
2014.

[P13] S. EICHELBAUM, G. SCHEUERMANN, and M. HLAWITSCHKA. PointAO
– Improved Ambient Occlusion for Point-based Visualization. Eu-
roVis - Short Papers. Ed. by M. Hlawitschka and T. Weinkauf. 2013, 13–
17.

199

List of Talks

List of my given talks as of December 8, 2014. The list is sorted chronologically.
The talks are available online, alongside the respective publication at
http://www.sebastian-eichelbaum.de/publications.

[T1] Image Space Tensor Field Visualization using a LIC-like Method.
July 2009, Visualization in Medicine and Life Sciences 2009 in Bremer-
haven, Germany.

[T2] Visualization of Effective Connectivity of the Brain. November 2010,
15th International Workshop on Vision, Modeling and Visualization in
Siegen, Germany.

[T3] Image Space Tensor Field Visualization using a LIC-like Method.
December 2010, 6th High End Visualization Workshop in Obergurgl, Aus-
tria.

[T4] LineAO – Improved Three-Dimensional Line Rendering. October
2012, IEEE VisWeek 2012 in Seattle, Washington, USA.

[T5] LineAO – Improved Three-Dimensional Line Rendering. October
2012, Lawrence Berkeley National Laboratory, Berkeley, California, USA.

[T6] PointAO – Improved Ambient Occlusion for Point-based Visualiza-
tion. June 2013, EuroVis – The Eurographics Conference on Visualization
2013 in Leipzig, Germany.

[T7] OpenWalnut – An Open-Source Tool for Visualization of Medical
and Bio-Signal Data. September 2013, Dreiländertagung der Deutschen,
Schweizerischen und Österreichischen Gesellschaft für Biomedizinische Tech-
nik in Graz, Austria.

http://www.sebastian-eichelbaum.de/publications

200 List of Talks

201

List of Figures

3.1 The GUI of OpenWalnut. 18

4.1 Abstract model and anatomical visualization. 26
4.2 Practical effective connectivity model. 28
4.3 Selected fibers between the left and right lingual gyrus. 31
4.4 Depiction of centerline vs. longest fiber tract for parameterization. 32
4.5 Animated connectivity on the example tracts. 34
4.6 Real world DCM data viusalized in context. 39
4.7 Selective exploration of the data. 40
4.8 Artificial test data for illustration. 42

5.1 Visualization of skull bone plates from MRI. 57
5.2 Isosurface renderings for the Skull-Hole-Model. 61
5.3 Current density magnitude plot for tDCS example on cutting

plane. 63
5.4 Current density magnitude plot for tDCS example on material

boundaries. 64
5.5 Direct Volume Rendering (DVR) for the Skull-Hole-Model. . . 65
5.6 Streamlines depicting the electrical flow field in the Skull-Hole-

Model. 68
5.7 Streamlines depicting differences of the electrical flow fields. . . 69
5.8 Clipping planes used for streamlines with anatomical context in

the Skull-Hole-Model. 70
5.9 Perception of streamlines in 3D. 71
5.10 Streamlines through the volume conductor. 72
5.11 Streamlines through the 3-Layer-Model data. 74
5.12 Line Integral Convolution (LIC) for the Skull-Hole-Model. . . . 75
5.13 Line Integral Convolution (LIC) for the 1- and 3-Layer-Model. . 76
5.14 Line Integral Convolution (LIC) on a cutting plane. 77

202 List of Figures

5.15 Surface LIC in the tDCS example. 78
5.16 The influence of the chosen cutoff angle on surface mapped LIC. 79

6.1 The OpenGL rendering pipeline. 90
6.2 The OpenGL coordinate spaces. 93

7.1 Comparison of the original TensorMesh with our improved version.108
7.2 Flowchart indicating the original TensorMesh algorithm. 110
7.3 Illustration of the reaction diffusion noise. 113
7.4 Advection texture after ten integration steps. 117
7.5 The composited image. 119
7.6 Flowchart indicating the additional postprocessing step. 120
7.7 The final image as a result of the postprocessing shader. 125
7.8 Streamtube rendering effect on the surface. 127
7.9 Improved TensorMesh applied to a spherical test dataset. . . . 130
7.10 Improved TensorMesh on an axial slice through a human brain. 131
7.11 A slice in the well known single point load dataset. 132
7.12 Artifacts in a zoomed streamtube rendering. 137

8.1 Fiber tractography rendered using illuminated lines and LineAO.144
8.2 Illustration of the ambient occlusion scheme. 146
8.3 Concept of AO in screen space. 154
8.4 Influence of different falloff functions. 157
8.5 LineAO with tube rendering. 161
8.6 LineAO rendering pipeline. 162
8.7 Streamlines around the main vortices of a delta wing dataset. . 166
8.8 LineAO also shades solid geometry smoothly. 167
8.9 LineAO rendering of a deterministic fiber tracking of the human

brain. 168
8.10 Comparison of different line rendering approaches. 169
8.11 LineAO on a less dense tube rendering. 170
8.12 Different amounts of samples for LineAO. 171

9.1 DTI super-quadric glyphs using PointAO. 182
9.2 Cut through an Argon fluid with enclosed Argon gas bubble. . 187
9.3 Particle flow in the leading edge vortices of an inclined delta wing.188
9.4 Light detection and ranging (LIDAR) scan of the Golden Gate

bridge. 189
9.5 Sampling artifacts on a screen size glyph. 190

203

List of Tables

4.1 Performance in frames per second. 42

5.1 Advantages and disadvantages of the shown visualization methods. 85

7.1 Performance of TensorMesh with different postprocessings. . . . 134
7.2 Influence of increasing iteration counts on the performance of

TensorMesh. 135

8.1 Performance of LineAO. 172

9.1 Performance of PointAO. 190

204 List of Tables

205

Bibliography

[1] J. AHRENS, B. GEVECI, and C. LAW. ParaView: An End-User Tool
for Large Data Visualization. Visualization Handbook. Ed. by C. Hansen
and C. Johnson. Elsevier, 2005.

[2] D. AKERS, A. SHERBONDY, R. MACKENZIE, R. DOUGHERTY, and
B. WANDELL. Exploration of the Brain’s White Matter Pathways
with Dynamic Queries. VIS ’04: Proceedings of the conference on Visu-
alization ’04. Washington, DC, USA: IEEE Computer Society, 2004, 377–
384. ISBN: 0-7803-8788-0.

[3] M. AKHTARI, H. BRYANT, A. MAMELAK, E. FLYNN, L. HELLER, J.
SHIH, M. MANDELKEM, A. MATLACHOV, D. RANKEN, E. BEST, M.
DIMAURO, R. LEE, and W. SUTHERLING. Conductivities of Three-
Layer Live Human Skull. Brain Topography 14 (3 2002), 151–167. ISSN:
0896-0267.

[4] M. ALEXA, J. BEHR, D. COHEN-OR, S. FLEISHMAN, D. LEVIN,
and C. T. SILVA. Point set surfaces. Proceedings of the conference on
Visualization ’01. VIS ’01. San Diego, California: IEEE Computer Society,
2001, 21–28. ISBN: 0-7803-7200-X.

[5] Amira - Visualize Analyze Present.
URL: http://www.amira.com/.

[6] A. ANWANDER, R. SCHURADE, M. HLAWITSCHKA, G. SCHEUER-
MANN, and T. KNÖSCHE. White Matter Imaging with Virtual Klin-
gler Dissection. NeuroImage 47.Supplement 1 (2009). Organization for
Human Brain Mapping 2009 Annual Meeting, S105–S105. ISSN: 1053-
8119.

[7] O. ARIKAN, D. A. FORSYTH, and J. F. O’BRIEN. Fast and detailed
approximate global illumination by irradiance decomposition. ACM

http://www.amira.com/

206 Bibliography

SIGGRAPH 2005 Papers. SIGGRAPH ’05. Los Angeles, California: ACM,
2005, 1108–1114.

[8] N. BANGERA, D. SCHOMER, N. DEHGHANI, I. ULBERT, S. CASH,
S. PAPAVASILIOU, S. EISENBERG, A. DALE, and E. HALGREN. Ex-
perimental validation of the influence of white matter anisotropy
on the intracranial EEG forward solution. Journal of Computational
Neuroscience (2010). ISSN: 0929-5313.

[9] P. J. BASSER, S. PAJEVIC, C. PIERPAOLI, J. DUDA, and A. AL-
DROUBI. In vivo fiber tractography using DT-MRI data. Magnetic
resonance in medicine : official journal of the Society of Magnetic Res-
onance in Medicine / Society of Magnetic Resonance in Medicine 44.4
(2000), 625–632. ISSN: 0740-3194.

[10] D. R. BAUM, H. E. RUSHMEIER, and J. M. WINGET. Improving
radiosity solutions through the use of analytically determined form-
factors. Proceedings of the 16th annual conference on Computer graphics
and interactive techniques. SIGGRAPH ’89. New York, NY, USA: ACM,
1989, 325–334. ISBN: 0-89791-312-4.

[11] S. BAUMANN, D. WOZNY, S. KELLY, and F. MENO. The Electrical
Conductivity of Human Cerebrospinal Fluid at Body Temperature.
IEEE Transactions on Biomedical Engineering 44.3 (1997), 220–3.

[12] L. BAVOIL and M. SAINZ. Multi-layer dual-resolution screen-space
ambient occlusion. SIGGRAPH 2009: Talks. SIGGRAPH ’09. New Or-
leans, Louisiana: ACM, 2009, 45:1–45:1. ISBN: 978-1-60558-834-6.

[13] W. BENGER and H.-C. HEGE. Tensor Splats. Conference on Visual-
ization and Data Analysis. Ed. by Erbacher, Chen, Roberts, Grohn, and
Borner. 5295. Proceedings of SPIE. 2004, 151–162.

[14] H. BERGER. Über das Elektroenkephalogram des Menschen. Archiv
für Psychiatrie und Nervenkrankheiten 99.1 (1933), 555–74.

[15] J. BERMAN, M. BERGER, P. MUKHERJEE, and R. HENRY.Diffusion-
tensor imaging-guided tracking of fibers of the pyramidal tract
combined with intraoperative cortical stimulation mapping in pa-
tients with gliomas. Neurosurgery 101.1 (2004), 66–72.

[16] O. BERTRAND. 3D Finite element method in brain electrical ac-
tivity studies. Biomagnetic localization and 3D Modeling 1 (1991), 154–
171.

Bibliography 207

[17] J. BLAAS, C. P. BOTHA, B. PETERS, F. M. VOS, and F. H. POST.
Fast and Reproducible Fiber Bundle Selection in DTI Visualization.
Visualization Conference, IEEE (2005), 59–64.

[18] J. F. BLINN. Models of light reflection for computer synthesized
pictures. SIGGRAPH ’77: Proceedings of the 4th annual conference on
Computer graphics and interactive techniques. San Jose, California: ACM,
1977, 192–198.

[19] J. F. BLINN. Simulation of wrinkled surfaces. SIGGRAPH Comput.
Graph. 12.3 (1978), 286–292. ISSN: 0097-8930.

[20] P. BOGGIO, R. FERRUCCI, S. RIGONATTI, P. COVRE, M. NITSCHE,
A. PASCUAL-LEONE, and F. FREGNI. Effects of transcranial direct
current stimulation on working memory in patients with Parkin-
son’s disease. Journal of the Neurological Sciences 249 (2006), 31–38.

[21] G. BRADSHAW and C. O’SULLIVAN. Sphere-tree construction using
dynamic medial axis approximation. Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation. SCA ’02.
San Antonio, Texas: ACM, 2002, 33–40. ISBN: 1-58113-573-4.

[22] J. E. BRESENHAM. Algorithm for Computer Control of a Digital
Plotter. IBM System Journal 4.1 (1965), 25–30.

[23] S. P. BROEK, F. REINDERS, M. DONDERWINKEL, and M. J. PETERS.
Volume conduction effects in EEG and MEG. Electroencephalography
and Clinical Neurophysiology 106.6 (1998), 522–534.

[24] J. BRONSON, J. LEVINE, and R. WHITAKER. Lattice Cleaving:
Conforming Tetrahedral Meshes of Multimaterial Domains with
Bounded Quality. International Meshing Roundtable. 2012, 191–209.

[25] A. BRUNONI, P. BOGGIO, R. FERRUCCI, A. PRIORI, and F. FREGNI.
Transcranial Direct Current Stimulation: Challenges, Opportuni-
ties, and Impact on Psychiatry and Neurorehabilitation. Frontiers in
Psychiatry 4.19 (2011).

[26] A. BRUNONI, M. NITSCHE, N. BOLOGNINI, M. BIKSON, T. WAG-
NER, L. MERABET, D. EDWARDS, A. VALERO-CABRE, A. ROTEN-
BURG, A. PASCUAL-LEONE, R. FERRUCCI, A. PRIORI, P. BOGGIO,
and F. FREGNI. Clinical research with transcranial direct current
stimulation (tDCS): Challenges and future directions. Brain Stimu-
lation 5.3 (2012), 175–95.

208 Bibliography

[27] M. BUNNELL. GPU Gems 2. Addison-Wesley Professional, 2005. 14.
Dynamic Ambient Occlusion and Indirect Lighting.

[28] B. CABRAL and L. C. LEEDOM. Imaging vector fields using line
integral convolution. SIGGRAPH ’93: Proceedings of the 20th annual
conference on Computer graphics and interactive techniques. Anaheim,
CA: ACM, 1993, 263–270. ISBN: 0-89791-601-8.

[29] E. CAPARELLI-DAQUER, T. ZIMMERMANN, E. MOOSHAGIAN, L.
PARRA, J. PARRA, J. RICE, A. DATTA, M. BIKSON, and E. WASSER-
MANN. A pilot study on effects of 4x1 High-Definition tDCS on
motor cortex excitability. Conference Proceedings - IEEE Engineering in
Medicine and Biology Society. IEEE. 2012, 735–8.

[30] A. CHU, W.-Y. CHAN, J. GUO, W.-M. PANG, and P.-A. HENG.
Perception-aware Depth Cueing for Illustrative Vascular Visual-
ization. BMEI ’08: Proceedings of the 2008 International Conference on
BioMedical Engineering and Informatics. Washington, DC, USA: IEEE
Computer Society, 2008, 341–346. ISBN: 978-0-7695-3118-2.

[31] P. CIGNONI, P. MARINO, C. MONTANI, E. PUPPO, and R. SCOPIGNO.
Speeding Up Isosurface Extraction Using Interval Trees. IEEE Trans-
actions on Visualization and Computer Graphics 3 (2 1997), 158–170.
ISSN: 1077-2626.

[32] R. L. COOK and K. E. TORRANCE. A Reflectance Model for Com-
puter Graphics. ACM Trans. Graph. 1.1 (1982), 7–24. ISSN: 0730-0301.

[33] M. DANNHAUER, D. BROOKS, and R. MACLEOD. A pipeline for
the Simulation of Transcranial Direct Current Stimulation for Re-
alistic Human Head Models using SCIRun/BioMesh3D. Conference
Proceedings - IEEE Engineering in Medicine and Biology Society. 2012,
5486–5489.

[34] M. DANNHAUER, E. LÄMMEL, C. WOLTERS, and T. R. KNÖSCHE.
Spatio-temporal Regularization in Linear Distributed Source Re-
construction from EEG/MEG: A Critical Review. Brain Topograghy
26 (2013), 229–46.

[35] M. DANNHAUER, B. LANFER, C. WOLTERS, and T. KNÖSCHE.
Modeling of the human skull in EEG source analysis. Human Brain
Mapping 32.9 (2011), 1383–1399.

Bibliography 209

[36] A. DATTA, J. BAKER, M. BIKSON, and J. FRIDRIKSSON. Individu-
alized model predicts brain current flow during transcranial direct-
current stimulation treatment in responsive stroke patient. Brain
Stimulation 4 (2011), 169–74.

[37] A. DATTA, M. BIKSON, and F. FREGNI. Transcranial direct current
stimulation in patients with skull defects and skull plates: high-
resolution computational FEM study of factors altering cortical
current flow. NeuroImage 52 (2010), 1268–78.

[38] A. DATTA, D. TRUONG, P. MINHAS, L. PARRA, and M. BIKSON.
Inter-Individual Variation during Transcranial Direct Current Stim-
ulation and Normalization of Dose Using MRI-Derived Computa-
tional Models. Frontiers in Psychiatry 3.91 (2012), 176–83.

[39] A. DATTA, X. ZHOU, Y. SU, L. PARRA, and M. BIKSON. Validation
of finite element model of transcranial electrical stimulation using
scalp potentials: implications for clinical dose. Journal of Neuronal
Engineering 10.3 (2013).

[40] DELEVOPER-GROUP-SIMBIO. Simbio: A generic environment for
bio-numerical simulations.
URL: https://www.mrt.uni-jena.de.

[41] T. DELMARCELLE and L. HESSELINK. Visualization of second order
tensor fields and matrix data. VIS ’92: Proceedings of the 3rd confer-
ence on Visualization ’92. Boston, Massachusetts: IEEE Computer Society
Press, 1992, 316–323. ISBN: 0-8186-2896-0.

[42] T. DELMARCELLE and L. HESSELINK. Visualizing Second-Order
Tensor Fields with Hyperstreamlines. IEEE Comput. Graph. Appl. 13
(4 1993), 25–33. ISSN: 0272-1716.

[43] C. DICK, J. GEORGII, R. BURGKART, and R. WESTERMANN. Stress
Tensor Field Visualization for Implant Planning in Orthopedics.
IEEE Transactions on Visualization and Computer Graphics 15.6 (2009),
1399–1406. ISSN: 1077-2626.

[44] Y. I. DIMITRIENKO. Tensor Analysis and Nonlinear Tensor Func-
tions. Kluwer Academic Publishers (Springer), 2002.

[45] P. DOBREV, P. ROSENTHAL, and L. LINSEN. An Image-space Ap-
proach to Interactive Point Cloud Rendering Including Shadows
and Transparency. Computer Graphics and Geometry 12.3 (2010), 2–25.

https://www.mrt.uni-jena.de

210 Bibliography

[46] J. DORMAND and P. PRINCE. A family of embedded Runge-Kutta
formulae. Journal of Computational and Applied Mathematics 6.1 (1980),
19–26. ISSN: 0377-0427.

[47] D. EDWARDS, M. CORTES, A. DATTA, P. MINHAS, E. WASSER-
MANN, and M. BIKSON. Physiological and modeling evidence for
focal transcranial electrical brain stimulation in humans: A basis
for high-definition tDCS. NeuroImage 74 (2013), 266–75.

[48] S. EICHELBAUM. Image Space Tensor Field Visualization Using a
LIC-like Method. Diploma Thesis. Fakultät für Mathematik und Infor-
matik Universität Leipzig, 2009.
URL: http://www.sebastian-eichelbaum.de/pub09.

[49] F. ENDERS, N. SAUBER, D. MERHOF, P. HASTREITER, C. NIMSKY,
and M. STAMMINGER. Visualization of White Matter Tracts with
Wrapped Streamlines. Proceedings of IEEE Visualization 2005. Ed. by
C. T. Silva, E. Gröller, and H. Rushmeier. IEEE Computer Society. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2005, 51–58.

[50] K. ENGEL, M. HADWIGER, J. KNISS, C. REZK-SALAMA, and D.
WEISKOPF. Real-time Volume Graphics. A K Peters, 2006.

[51] A. EVANS. Fast approximations for global illumination on dynamic
scenes. ACM SIGGRAPH 2006 Courses. SIGGRAPH ’06. Boston, Mas-
sachusetts: ACM, 2006, 153–171. ISBN: 1-59593-364-6.

[52] M. H. EVERTS, H. BEKKER, J. B. ROERDINK, and T. ISENBERG.
Depth-Dependent Halos: Illustrative Rendering of Dense Line Data.
IEEE Transactions on Visualization and Computer Graphics 15.06 (2009),
1299–1306. ISSN: 1077-2626.

[53] M. FALK and D. WEISKOPF. Output-Sensitive 3D Line Integral
Convolution. IEEE Transactions on Visualization and Computer Graphics
14 (2008), 820–834. ISSN: 1077-2626.

[54] Fiber Navigator.
URL: http://code.google.com/p/fibernavigator.

[55] D. FILION and R. MCNAUGHTON. Effects & techniques. ACM SIG-
GRAPH 2008 classes. SIGGRAPH ’08. Los Angeles, California: ACM, 2008,
133–164.

[56] A. FLÖEL. tDCS-enhanced motor and cognitive function in neuro-
logical diseases. NeuroImage 85.3 (2014), 934–47.

http://www.sebastian-eichelbaum.de/pub09
http://code.google.com/p/fibernavigator

Bibliography 211

[57] K. J. FRISTON, A. MECHELLI, R. TURNER, and C. J. PRICE. Non-
linear responses in fMRI: the Balloon model, Volterra kernels, and
other hemodynamics. Neuroimage 12.4 (2000), 466–477. ISSN: 1053-
8119.

[58] K. FRISTON, L. HARRISON, and W. PENNY. Dynamic causal mod-
elling. NeuroImage 19.4 (2003), 1273–1302. ISSN: 1053-8119.

[59] M. FUCHS, M. WAGNER, and J. KASTNER. Development of volume
conductor and source models to localize epileptic foci. eng. Journal
of Clinical Neurophysiology 24.2 (2007), 101–119.

[60] E. GAMMA, R. HELM, and R. E. JOHNSON. Design Patterns. Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Long-
man, 1994.

[61] S. GERHARD, L. CAMMOUN, J.-P. THIRAN, and P. HAGMANN.
ConnectomeViewer.org. Ecole Polytechnique Fédérale de Lausanne and
University Hospital Center and University of Lausanne. 2010.
URL: http://www.connectomics.org/.

[62] M. GRABNER and R. S. LARAMEE. Image Space Advection on
graphics hardware. SCCG ’05: Proceedings of the 21st spring confer-
ence on Computer graphics. Budmerice, Slovakia: ACM, 2005, 77–84.

[63] R. A. GRANGER. Fluid Mechanics. Dover Publications, 1995.

[64] C. P. GRIBBLE and S. G. PARKER. Enhancing interactive particle
visualization with advanced shading models. Proceedings of the 3rd
symposium on Applied perception in graphics and visualization. APGV ’06.
Boston, Massachusetts: ACM, 2006, 111–118. ISBN: 1-59593-429-4.

[65] S. GROTTEL, M. KRONE, K. SCHARNOWSKI, and T. ERTL. Object-
Space Ambient Occlusion for Molecular Dynamics. Proceedings of
IEEE Pacific Visualization Symposium 2012. 2012, 209–216.

[66] T. GÜNTHER, C. RÖSSL, and H. THEISEL. Opacity Optimization for
3D Line Fields. ACM Transactions on Graphics (Proc. ACM SIGGRAPH)
32.4 (2013), 120:1–120:8.

[67] H. HAGEN and C. GARTH. An Introduction to Tensors. English. Vi-
sualization and Processing of Tensor Fields. Ed. by J. Weickert and H.
Hagen. Mathematics and Visualization. Springer Berlin Heidelberg, 2006,
3–13. ISBN: 978-3-540-25032-6.

http://www.connectomics.org/

212 Bibliography

[68] P. HAGMANN, L. CAMMOUN, X. GIGANDET, R. MEULI, C. J.
HONEY, V. J. WEDEEN, and O. SPORNS. Mapping the Structural
Core of Human Cerebral Cortex. PLoS Biol 6.7 (2008), e159.

[69] Y. O. HALCHENKO and M. HANKE. Open is not enough. Let’s take
the next step: An integrated, community-driven computing plat-
form for neuroscience. Frontiers in Neuroinformatics 6.22 (2012). ISSN:
1662-5196.

[70] H. HALLEZ, B. VANRUMSTE, P. V. HESE, S. DELPUTTE, and I.
LEMAHIEU. Dipole estimation errors due to differences in modeling
anisotropic conductivities in realistic head models for EEG source
analysis. eng. Physics in Medicine and Biology 53.7 (2008), 1877–1894.

[71] K. M. HASAN, P. J. BASSER, D. L. PARKER, and A. L. ALEXANDER.
Analytical Computation of the Eigenvalues and Eigenvectors in
DT-MRI. Journal of Magnetic Resonance 152.1 (2001), 41–47. ISSN:
1090-7807.

[72] J. HAUEISEN, D. TUCH, C. RAMON, P. SCHIMPF, W. WEDEEN,
J. GEORGE, and J. BELLIVEAU. The Influence of Brain Tissue
Anisotropy on Human EEG and MEG. NeuroImage 15 (2002), 159–66.

[73] K. HAYES. The Current Path in Electric Convulsion Shock. Arch.
Neurol. Psychiat. 63 (1950), 103–9.

[74] L. HESSELINK, Y. LEVY, and Y. LAVIN. The Topology of Symmetric,
Second-Order 3D Tensor Fields. IEEE Transactions on Visualization
and Computer Graphics 3.1 (1997), 1–11. ISSN: 1077-2626.

[75] M. HLAWATSCH, J. E. VOLLRATH, F. SADLO, and D. WEISKOPF.
Coherent Structures of Characteristic Curves in Symmetric Second
Order Tensor Fields. IEEE Transactions on Visualization and Computer
Graphics 17.6 (2011), 781–794.

[76] M. HLAWITSCHKA, S. EICHELBAUM, and G. SCHEUERMANN. Fast
and Memory Efficient GPU-based Rendering of Tensor Data. Pro-
ceedings of the IADIS International Conference on Computer Graphics and
Visualization 2008. 2008, 36–42.

[77] M. HLAWITSCHKA, C. GARTH, X. TRICOCHE, G. KINDLMANN, G.
SCHEUERMANN, K. I. JOY, and B. HAMANN. Direct Visualization
of Fiber Information by Coherence. International Journal of Computer
Assisted Radiology and Surgery, CARS, CUARC.08 Special Issue (2009).

Bibliography 213

[78] M. HLAWITSCHKA and G. SCHEUERMANN. HOT-Lines — Tracking
Lines in Higher Order Tensor Fields. Proceedings of IEEE Visualization
2005. Ed. by C. T. Silva, E. Gröller, and H. Rushmeier. 2005, 27–34.

[79] T.-D. HOANG and K.-L. LOW. Multi-resolution screen-space ambi-
ent occlusion. Proceedings of the 2011 Computer Graphics International
Conference. CGI ’11. PREPRINT. 2011.

[80] T.-D. HOANG and K.-L. LOW. Multi-resolution screen-space ambi-
ent occlusion. Talk at Computer Graphics International Conference 2011.
2011.

[81] J. HOBEROCK and Y. JIA. GPU Gems 3. Addison-Wesley Professional,
2005. 12. High-Quality Ambient Occlusion.

[82] D. HOLTEN and J. J. WIJK. A user study on visualizing directed
edges in graphs. CHI ’09: Proceedings of the 27th international confer-
ence on Human factors in computing systems. Boston, MA, USA: ACM,
2009, 2299–2308. ISBN: 978-1-60558-246-7.

[83] I. HOTZ, L. FENG, H. HAGEN, B. HAMANN, K. JOY, and B.
JEREMIC. Physically Based Methods for Tensor Field Visualization.
VIS ’04: Proceedings of the conference on Visualization ’04. Washington,
DC, USA: IEEE Computer Society, 2004, 123–130. ISBN: 0-7803-8788-0.

[84] I. HOTZ, Z. X. FENG, B. HAMANN, and K. I. JOY. Tensor Field Vi-
sualization using a fabric-like texture on arbitrary two-dimensional
surfaces. Mathematical Foundations of Scientific Visualization, Computer
Graphics, and Massive Data Exploration. Ed. by T. Möller, B. Hamann,
and R. D. Russel. Springer-Verlag Heidelberg, Germany, 2009.

[85] C. IM, H. JUNG, J. CHOI, S. LEE, and K. JUNG. Determination of
optimal electrode positions for transcranial direct current stimula-
tion (tDCS). Physics in Medicine and Biology 53 (2008), 219–25.

[86] H. INGO. Open Life: The Philosophy of Open Source. Lulu.com,
2006. ISBN: 978-1-84728-611-6.

[87] Y. IWAKIRI, Y. OMORI, and T. KANKO. Practical Texture Mapping
on Free-Form Surfaces. PG ’00: Proceedings of the 8th Pacific Con-
ference on Computer Graphics and Applications. Washington, DC, USA:
IEEE Computer Society, 2000, 97. ISBN: 0-7695-0868-5.

214 Bibliography

[88] D. L. JAMES and K. FATAHALIAN. Precomputing interactive dy-
namic deformable scenes. ACM Trans. Graph. 22 (3 2003), 879–887.
ISSN: 0730-0301.

[89] J. E. JONES. On the Determination of Molecular Fields. II. From
the Equation of State of a Gas. Proceedings of the Royal Society of
London. Series A 106.738 (1924), 463–477.

[90] V. KAJALIN. ShaderX 7. Ed. by W. Engel. Charles River Media, 2009.
Screen Space Ambient Occlusion, 413–424.

[91] U. KALU, C. SEXTON, C. LOO, and K. EBMEIER. Transcranial
direct current stimulation in the treatment of major depression: a
meta-analysis. Psychological Medicine 42.9 (2012), 1791–800.

[92] G. KINDLMANN. Superquadric Tensor Glyphs. Proceedings of IEEE
TCVG/EG Symposium on Visualization 2004. 2004, 147–154.

[93] D. B. KIRK and W.-m. W. HWU. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 2010. ISBN:
978-0-123-81472-2.

[94] A. M. KNOLL, I. WALD, and C. D. HANSEN. Coherent multiresolution
isosurface ray tracing. Vis. Comput. 25.3 (2009), 209–225. ISSN: 0178-
2789.

[95] A. KNOLL, Y. HIJAZI, R. WESTERTEIGER, M. SCHOTT, C. HANSEN,
and H. HAGEN. Volume Ray Casting with Peak Finding and Dif-
ferential Sampling. IEEE Transactions on Visualization and Computer
Graphics 15.6 (2009), 1571–1578. ISSN: 1077-2626.

[96] J. KONTKANEN and S. LAINE. Ambient occlusion fields. Proceedings
of the 2005 symposium on Interactive 3D graphics and games. I3D ’05.
Washington, District of Columbia: ACM, 2005, 41–48. ISBN: 1-59593-013-
2.

[97] O. KREYLOS, G. BAWDEN, and L. KELLOGG. Immersive Visual-
ization and Analysis of LiDAR Data. Advances in Visual Computing.
Ed. by G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli,
J. Peters, J. Klosowski, L. Arns, Y. Chun, T.-M. Rhyne, and L. Mon-
roe. 5358. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, 846–855. ISBN: 978-3-540-89638-8.

Bibliography 215

[98] J. KRONANDER, D. JÖNSSON, J. LÖW, P. LJUNG, A. YNNERMAN,
and J. UNGER. Efficient Visibility Encoding for Dynamic Illumina-
tion in Direct Volume Rendering : -. IEEE Transactions on Visualization
and Computer Graphics (2011). PREPRINT.

[99] M. KRONE, K. BIDMON, and T. ERTL. Interactive Visualization of
Molecular Surface Dynamics. IEEE Transactions on Visualization and
Computer Graphics (Proceedings Visualization / Information Visualization
2009) 15.6 (2009), 1391–1398.

[100] M. KUO, W. PAULUS, and M. NITSCHE. Therapeutic effects of
non-invasive brain stimulation with direct currents (tDCS) in neu-
ropsychiatric diseases. NeuroImage 85.3 (2014), 948–60.

[101] D. LACEWELL, B. BURLEY, S. BOULOS, and P. SHIRLEY. Raytracing
Prefiltered Occlusion for Aggregate Geometry. IEEE Symposium on
Interactive Raytracing 2008. 2008, 19–26.

[102] B. LANFER, M. SCHERG, M. DANNHAUER, T. R. KNÖSCHE, and
C. H. WOLTERS. Influences of Skull Segmentation Deficiencies on
EEG Source Analysis. NeuroImage 62.1 (2012), 418–431.

[103] M. LANGER and H. BÜLTHOFF. Depth Discrimination from Shading
under Diffuse Lighting. Perception 29 (2000), 649–660.

[104] R. S. LARAMEE, B. JOBARD, and H. HAUSER. Image Space Based
Visualization of Unsteady Flow on Surfaces. VIS ’03: Proceedings of
the 14th IEEE Visualization 2003 (VIS’03). Washington, DC, USA: IEEE
Computer Society, 2003, 18. ISBN: 0-7695-2030-8.

[105] R. S. LARAMEE, J. J. WIJK, B. JOBARD, and H. HAUSER. ISA and
IBFVS: Image Space-Based Visualization of Flow on Surfaces. IEEE
Transactions on Visualization and Computer Graphics 10 (2004), 637–648.
ISSN: 1077-2626.

[106] E. LENGYEL. Mathematics for 3D Game Programming and Com-
puter Graphics. Cengage Learning PTR, 2011. ISBN: 978-1-4354-5886-4.

[107] A. LEW, D. SLIVA, M.-S. CHOE, P. GRANT, Y. OKADA, C. WOLTERS,
and M. HÄMÄLÄINEN. Effects of sutures and fontanels on MEG and
EEG source analysis in a realistic infant head model. NeuroImage 76
(2013), 282–293.

216 Bibliography

[108] K. LI. Neuroanatomical Segmentation in MRI Exploiting A Priori
Knowledge. PhD thesis. Department of Computer, Information Science,
and the Graduate School of the University of Oregon, 2007.

[109] Y. LI and P. WEN. Tissue Conductivity Anisotropy Inhomogene-
ity Study in EEG Head Modelling. Bioinformatics & Computational
Biology. 2008, 862–867.

[110] F.-H. LIN, J. W. BELLIVEAU, A. M. DALE, and M. S. HÄMÄLÄI-
NEN. Distributed Current Estimates Using Cortical Orientation
Constraints. Human Brain Mapping 27.1 (2006), 1–13.

[111] Y. LIVNAT, H.-W. SHEN, and C. R. JOHNSON. A Near Optimal
Isosurface Extraction Algorithm Using the Span Space. IEEE Trans-
actions on Visualization and Computer Graphics 2.1 (1996), 73–84. ISSN:
1077-2626.

[112] G. LOHMANN, K. MÜLLER, V. BOSCH, H. MENTZEL, S. HESSLER,
L. CHEN, S. ZYSSET, and D. Y. CRAMON. LIPSIA–a new software
system for the evaluation of functional magnetic resonance images
of the human brain. eng. Computerized Medical Imaging and Graphics
25.6 (2001), 449–457.

[113] W. E. LORENSEN and H. E. CLINE. Marching cubes: A high resolu-
tion 3D surface construction algorithm. SIGGRAPH ’87: Proceedings
of the 14th annual conference on Computer graphics and interactive tech-
niques. New York, NY, USA: ACM, 1987, 163–169. ISBN: 0-89791-227-6.

[114] A. LOZANO and M. HALLETT. Physics of effects of transcranial
brain stimulation. Brain Stimulation E-Book: Handbook of Clinical Neu-
rology (Series editors: Aminoff, Boller, Swaab) 116 (2013), 353.

[115] T. LUFT, C. COLDITZ, and O. DEUSSEN. Image Enhancement By
Unsharp Masking The Depth Buffer. ACM Transactions on Graphics
25.3 (2006), 1206–1213.

[116] R. MACIEJEWSKI, I. WOO, W. CHEN, and D. EBERT. Structuring
Feature Space: A Non-Parametric Method for Volumetric Transfer
Function Generation. IEEE Transactions on Visualization and Computer
Graphics 15.6 (2009), 1473–1480. ISSN: 1077-2626.

[117] O. MALLO, R. PEIKERT, C. SIGG, and F. SADLO. Illuminated Lines
Revisited. IEEE Visualization. 2005, 19–26.

Bibliography 217

[118] M. MALMER, F. MALMER, U. ASSARSSON, and N. HOLZSCHUCH.
Fast Precomputed Ambient Occlusion for Proximity Shadows. Jour-
nal of Graphics Tools 12.2 (2007), 59–71.

[119] S. MARCHESIN, C.-K. CHEN, C. HO, and K.-L. MA. View-Dependent
Streamlines for 3D Vector Fields. IEEE Transactions on Visualization
and Computer Graphics 16.6 (2010), 1578–1586. ISSN: 1077-2626.

[120] G. MARIN, C. GUERIN, S. BAILLET, L. GARNERO, and G. MEUNIER.
Influence of skull anisotropy for the forward and inverse problem in
EEG: simulation studies using FEM on realistic head models. eng.
Human Brain Mapping 6.4 (1998), 250–269.

[121] N. MAX. Optical Models for Direct Volume Rendering. IEEE Trans-
actions on Visualization and Computer Graphics 1.2 (1995), 99–108. ISSN:
1077-2626.

[122] MayaVi Data Visualizer.
URL: http://mayavi.sourceforge.net.

[123] M. MCGUIRE. Ambient Occlusion Volumes. Proceedings of High Per-
formance Graphics 2010. Saarbrucken, Germany: Eurographics Association,
2010, 47–56.

[124] A. R. MCINTOSH and F. GONZALEZ-LIMA. Structural equation mod-
eling and its application to network analysis in functional brain
imaging. Human Brain Mapping 2.1-2 (1994), 2–22.

[125] MedINRIA: Medical Image Navigation and Research Tool by IN-
RIA.
URL: http://www-sop.inria.fr/asclepios/software/MedINRIA/.

[126] L. MEIDEIROS, I. DESOUZA, L. VIDOR, A. DESOUZA, A. DEITOS,
M. VOLZ, F. FREGNI, W. CAUMO, and I. TORRES. Neurobiologi-
cal Effects of Transcranial Direct Current Stimulation: A Review.
Frontiers in Psychiatry 3.110 (2012).

[127] Z. MELEK, D. MAYERICH, C. YUKSEL, and J. KEYSER. Visualization
of Fibrous and Thread-like Data. IEEE Transactions on Visualization
and Computer Graphics 12 (5 2006), 1165–1172. ISSN: 1077-2626.

http://mayavi.sourceforge.net
http://www-sop.inria.fr/asclepios/software/MedINRIA/

218 Bibliography

[128] D. MERHOF, M. SONNTAG, F. ENDERS, C. NIMSKY, P. HAS-
TREITER, and G. GREINER. Hybrid Visualization for White Matter
Tracts using Triangle Strips and Point Sprites. IEEE Transactions
on Visualization and Computer Graphics 12.5 (2006), 1181–1188. ISSN:
1077-2626.

[129] MeVisLab: development environment for medical image processing
and visualization.
URL: http://www.mevislab.de/.

[130] P. MINHAS, M. BIKSON, A. WOODS, A. ROSEN, and S. KESSLER.
Transcranial direct current stimulation in pediatric brain: a com-
putational modeling study. Conference Proceedings - IEEE Engineering
in Medicine and Biology Society. 2012.

[131] M. MITTRING. Finding next gen: CryEngine 2. ACM SIGGRAPH 2007
courses. SIGGRAPH ’07. San Diego, California: ACM, 2007, 97–121.

[132] V. MONTES-RESTREPO, P. MIERLO, G. STROBBE, S. STAELENS,
S. VANDENBERGHE, and H. HALLEZ. Influence of Skull Model-
ing Approaches on EEG Source Localization. Brain Topography 27.1
(2014), 95–111.

[133] K. MORELAND. A Survey of Visualization Pipelines. Visualization and
Computer Graphics, IEEE Transactions on 19.3 (2013), 367–378. ISSN:
1077-2626.

[134] S. MORI and P. C. M. ZIJL. Fiber tracking: principles and strategies
- a technical review. NMR in Biomedicine 15.7-8 (2002), 468–480.

[135] K. MUELLER, T. WELSH, W. ZHU, J. MEADE, and N. VOLKOW.
Brainminer: A visualization tool for ROI-based discovery of func-
tional relationships in the human brain. New Paradigms in Information
Visualization and Manipulation (NPIVM) 2000. 2000, 481–485.

[136] G. M. NIELSON and B. HAMANN. The asymptotic decider: resolving
the ambiguity in marching cubes. VIS ’91: Proceedings of the 2nd
conference on Visualization ’91. San Diego, California: IEEE Computer
Society Press, 1991, 83–91. ISBN: 0-8186-2245-8.

[137] M. NITSCHE, L. COHEN, E. WASSERMANN, A. PRIORI, N. LANG,
A. ANTAL, W. PAULUS, F. HUMMEL, P. BOGGIO, and F. FREGNI.
Transcranial direct current stimulation: State of the art 2008. Brain
Stimulation 1.3 (2008), 206–223.

http://www.mevislab.de/

Bibliography 219

[138] M. NITSCHE and W. PAULUS. Noninvasive brain stimulation proto-
cols in the treatment of epilepsy: current state and perspectives.
Neurotherapeutics 6 (2009), 244–50.

[139] M. NITSCHE and W. PAULUS.Transcranial direct current stimulation–
update 2011. Restorative Neurology and Neuroscience 29.6 (2011), 463–
92.

[140] M. A. NITSCHE, L. G. COHEN, E. M. WASSERMANN, A. PRIORI,
N. LANG, A. ANTAL, W. PAULUS, F. HUMMEL, P. S. BOGGIO, and
F. FREGNI. Transcranial direct current stimulation: State of the art
2008. Brain Stimulation 1.3 (2008), 206–223.

[141] P. NUNEZ. Electric Fields of the Brain: The Neurophysics of EEG.
New York: Oxford University Press, 1981.

[142] S. OELTZE-JAFRA and B. PREIM. Survey of Labeling Techniques in
Medical Visualizations. Eurographics Workshop on Visual Computing for
Biology and Medicine, VCBM 2014, Vienna, Austria, 2014. Proceedings.
Ed. by I. Viola, K. Bühler, and T. Ropinski. 2014, 199–208.

[143] T. F. OOSTENDORP, J. DELBEKE, and D. F. STEGEMAN. The con-
ductivity of the human skull: results of in vivo and in vitro mea-
surements. IEEE Transactions on Biomedical Engineering 47.11 (2000),
1487–1492.

[144] OpenSceneGraph: an open source high performance 3D graphics
toolkit.
URL: http://www.openscenegraph.org/.

[145] S. PAJEVIC and C. PIERPAOLI. Color schemes to represent the orien-
tation of anisotropic tissues from diffusion tensor data: application
to white matter fiber tract mapping in the human brain. Magnetic
Resonance in Medicine 43.6 (2000), 921–921. ISSN: 1522-2594.

[146] J. PARK, S. HONG, D. KIM, M. SUH, and C. IM. A Novel Array-Type
Direct Current Stimulation (tDCS) System for Accurate Focusing
on Target Brain Regions. IEEE Transactions on Magnetics 47.5 (2011),
882–5.

[147] W. PAULUS. Transcranial electrical stimulation (tES - tDCS; tRNS,
tACS) methods. Neuropsychol Rehabil. 21.5 (2011), 602–17.

http://www.openscenegraph.org/

220 Bibliography

[148] W. PAULUS, A. ANTAL, and M. NITSCHE. A reference book for
Transcranial Brain Stimulation. Ed. by C. Miniussi, W. Paulus, and M.
Rossini. Taylor and Francis Group, 2012. Physiological basis and method-
ological aspects of transcranial electric stimulation (tDCS, tACS, and tRNS).

[149] T. PEETERS, V. PRCKOVSKA, M. ALMSICK, A. VILANOVA, and
B. HAAR ROMENY. Fast and sleek glyph rendering for interactive
HARDI data exploration. Visualization Symposium, IEEE Pacific (2009),
153–160.

[150] W. PENNY, K. STEPHAN, A. MECHELLI, and K. FRISTON. Mod-
elling functional integration: a comparison of structural equation
and dynamic causal models. NeuroImage 23, Supplement 1 (2004).
Mathematics in Brain Imaging, S264–S274. ISSN: 1053-8119.

[151] L. PETROVIC, M. HENNE, and J. ANDERSON. Volumetric Methods
for Simulation and Rendering of Hair. Pixar Technical Memo 06-08.
2006.

[152] N. POLYDORIDES and R. LIONHEART. A Matlab toolkit for three-
dimensional electrical impedance tomography: a contribution to
the Electrical Impedance and Diffuse Optical Reconstruction Soft-
ware project. Measurement Science and Technology 13.12 (2002), 1871–
83.

[153] B. PREIM and C. P. BOTHA. Visual Computing for Medicine, Second
Edition: Theory, Algorithms, and Applications. 2nd. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2013. ISBN: 0124158730,
9780124158733.

[154] B. PURNOMO, J. D. COHEN, and S. KUMAR. Seamless texture
atlases. SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing. Nice, France: ACM, 2004, 65–74.
ISBN: 3-905673-13-4.

[155] V. S. RAMACHANDRAN. Perception of shape from shading. Nature
331 (1988), 163–166.

[156] S. RAMPERSAD, D. STEGEMAN, and T. OOSTENDORP. Single-
Layer Skull Approximations Perform Well in Transcranial Direct
Current Stimulation Modeling. IEEE Transactions on Neural Systems
and Rehabilitation Engineering 21.3 (2013), 346–353.

Bibliography 221

[157] G. REINA, K. BIDMON, F. ENDERS, P. HASTREITER, and T. ERTL.
GPU-Based Hyperstreamlines for Diffusion Tensor Imaging. Pro-
ceedings of EUROGRAPHICS - IEEE VGTC Symposium on Visualization
2006. 2006, 35–42.

[158] C. REINBOTHE, T. BOUBEKEUR, and M. ALEXA. Hybrid Ambient
Occlusion. EUROGRAPHICS 2009 Areas Papers (2009), 51–57.

[159] Z. REN, R. WANG, J. SNYDER, K. ZHOU, X. LIU, B. SUN, P.-P.
SLOAN, H. BAO, Q. PENG, and B. GUO. Real-time soft shadows
in dynamic scenes using spherical harmonic exponentiation. ACM
SIGGRAPH 2006 Papers. SIGGRAPH ’06. Boston, Massachusetts: ACM,
2006, 977–986. ISBN: 1-59593-364-6.

[160] T. ROHLFING, R. BRANDT, R. MENZEL, D. B. RUSSAKOFF, and
C. R. MAURER JR. Handbook of Biomedical Image Analysis: Reg-
istration Models. Ed. by J. S. Suri, D. Wilson, and S. Laxminarayan.
Springer–Verlag Berlin Heidelberg, 2005. Quo Vadis, Atlas-Based Segmen-
tation?, 435–486. ISBN: 978-0-306-48607-4.

[161] T. ROPINSKI, S. OELTZE, and B. PREIM. Survey of Glyph-based
Visualization Techniques for Spatial Multivariate Medical Data.
Computers & Graphics 35.2 (2011), 392–401. ISSN: 0097-8493.

[162] P. ROSENTHAL and L. LINSEN. Image-space point cloud rendering.
Proceedings of Computer Graphics International. 2008, 136–143.

[163] G. RUFFINI, F. WENDLING, I. MERLET, B. MOLAEE-ARDEKANI,
A. MEKONNEN, R. SALVADOR, A. SORIA-FRISCH, C. GRAU, S.
DUNNE, and P. MIRANDA. Transcranial current brain stimulation
(tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng.
3 (2013), 333–45.

[164] M. RUIZ, A. BARDERA, I. BOADA, and I. VIOLA. Automatic Trans-
fer Functions Based on Informational Divergence. IEEE Transactions
on Visualization and Computer Graphics 17 (12 2011), 1932–1941. ISSN:
1077-2626.

[165] M. RUIZ, I. BOADA, I. VIOLA, S. BRUCKNER, M. FEIXAS, and M.
SBERT. Obscurance-based Volume Rendering Framework. Proceed-
ings of Volume Graphics 2008. 2008, 113–120.

222 Bibliography

[166] M. RULLMANN, A. ANWANDER, M. DANNHAUER, S. WARFIELD,
F. DUFFY, and C. WOLTERS. EEG source analysis of epileptiform
activity using a 1 mm anisotropic hexahedra finite element head
model. NeuroImage 44.2 (2009), 399–410. ISSN: 1053-8119.

[167] S. RUSH and D. DRISCOLL. Current distribution in brain from sur-
face electrodes. Anesth Analg Curr Res 47 (1968), 717–23.

[168] S. RUSINKIEWICZ and M. LEVOY. QSplat: A Multiresolution Point
Rendering System for Large Meshes. Proceedings of the 27th An-
nual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’00. New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 2000, 343–352. ISBN: 1-58113-208-5.

[169] R. SADLEIR and A. ARGIBAY. Modeling Skull Electrical Properties.
Annals of Biomedical Engineering 35.10 (2007), 1.

[170] R. SADLEIR, T. VANNORSDALL, D. SCHRETLEN, and B. GORDON.
Target optimization in transcranial direct current stimulation. Fron-
tiers in Psychiatry 3.90 (2012).

[171] R. SALVADOR, A. MEKONNEN, G. RUFFINI, and P. C. MIRANDA.
Modeling the electric field induced in a high resolution realistic
head model during transcranial current stimulation. 32nd Annual
International Conference of the IEEE EMBS. 2010.

[172] P. H. SCHIMPF, C. RAMON, and J. HAUEISEN. Dipole models for
the EEG and MEG. eng. IEEE Transactions on Biomedical Engineering
49.5 (2002), 409–418.

[173] M. SCHIRSKI, T. KUHLEN, M. HOPP, P. ADOMEIT, S. PISCHINGER,
and C. BISCHOF. Efficient visualization of large amounts of parti-
cle trajectories in virtual environments using virtual tubelets. Pro-
ceedings of the 2004 ACM SIGGRAPH international conference on Virtual
Reality continuum and its applications in industry. VRCAI ’04. Singapore:
ACM, 2004, 141–147. ISBN: 1-58113-884-9.

[174] M. SCHIRSKI, T. KUHLEN, M. HOPP, P. ADOMEIT, S. PISCHINGER,
and C. BISCHOF.Virtual Tubelets-efficiently visualizing large amounts
of particle trajectories. Comput. Graph. 29.1 (2005), 17–27. ISSN: 0097-
8493.

Bibliography 223

[175] A. G. P. SCHJETNAN, J. FARAJI, G. A. METZ, M. TATSUNO, and A.
LUCZAK. Transcranial Direct Current Stimulation in Stroke Reha-
bilitation: A Review of Recent Advancements. Stroke Research and
Treatment 2013.170256 (2013), 31–38.

[176] M. SCHOTT, T. MARTIN, A. GROSSET, C. BROWNLEE, T. HOLLT,
B. BROWN, S. SMITH, and C. HANSEN. Combined surface and volu-
metric occlusion shading. Pacific Visualization Symposium (PacificVis),
2012 IEEE. 2012, 169–176.

[177] M. SCHOTT, V. PEGORARO, C. D. HANSEN, K. BOULANGER,
and K. BOUATOUCH. A Directional Occlusion Shading Model for
Interactive Direct Volume Rendering. Comput. Graph. Forum 28.3
(2009), 855–862.

[178] T. SCHULTZ and G. L. KINDLMANN.AMaximum Enhancing Higher-
Order Tensor Glyph. Comput. Graph. Forum 29.3 (2010), 1143–1152.

[179] T. SCHULTZ and H.-P. SEIDEL. Estimating Crossing Fibers: A Ten-
sor Decomposition Approach. IEEE Transactions on Visualization and
Computer Graphics 14.6 (2008), 1635–1642. ISSN: 1077-2626.

[180] G. SCHUSSMAN and K.-L. MA. Anisotropic Volume Rendering for
Extremely Dense, Thin Line Data. Proceedings of the conference on
Visualization ’04. VIS ’04. Washington, DC, USA: IEEE Computer Society,
2004, 107–114. ISBN: 0-7803-8788-0.

[181] SCIRun: A Scientific Computing Problem Solving Environment,
Scientific Computing and Imaging Institute (SCI).
URL: http://www.scirun.org.

[182] S. SHAHID, P. WEN, and T. AHFOCK. Numerical investigation of
white matter anisotropic conductivity in defining current distribu-
tion under tDCS. Computer Methods and Programs in Biomedicine 109.1
(2013), 48–64.

[183] P. SHANMUGAM and O. ARIKAN. Hardware accelerated ambient
occlusion techniques on GPUs. Proceedings of the 2007 symposium on
Interactive 3D graphics and games. I3D ’07. Seattle, Washington: ACM,
2007, 73–80. ISBN: 978-1-59593-628-8.

http://www.scirun.org

224 Bibliography

[184] F. SHARBROUGH, G.-E. CHATRIAN, R. LESSER, H. LÜDERS, M.
NUWER, and T. PICTON. American Electroencephalographic Soci-
ety Guidelines for Standard Electrode Position Nomenclature. Jour-
nal of clinical Neurophysiology 2.8 (1991), 200–202.

[185] D. SHREINER, G. SELLERS, J. M. KESSENICH, and B. M. LICEA-
KANE.OpenGL Programming Guide. Addison-Wesley Professional, 2013.
ISBN: 978-0-321-77303-6.

[186] P.-P. SLOAN. Normal mapping for precomputed radiance transfer.
Proceedings of the 2006 symposium on Interactive 3D graphics and games.
I3D ’06. Redwood City, California: ACM, 2006, 23–26. ISBN: 1-59593-295-
X.

[187] P.-P. SLOAN, J. KAUTZ, and J. SNYDER. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting
environments. Proceedings of the 29th annual conference on Computer
graphics and interactive techniques. SIGGRAPH ’02. San Antonio, Texas:
ACM, 2002, 527–536. ISBN: 1-58113-521-1.

[188] S. M. SMITH, M. JENKINSON, M. W. WOOLRICH, C. F. BECK-
MANN, T. E. J. BEHRENS, H. JOHANSEN-BERG, P. R. BANNISTER,
M. D. LUCA, I. DROBNJAK, D. E. FLITNEY, R. K. NIAZY, J. SAUN-
DERS, J. VICKERS, Y. ZHANG, N. D. STEFANO, J. M. BRADY, and
P. M. MATTHEWS. Advances in functional and structural MR im-
age analysis and implementation as FSL. eng. Neuroimage 23 Suppl
1 (2004), S208–S219.

[189] V. ŠOLTÉSZOVÁ, D. PATEL, S. BRUCKNER, and I. VIOLA. A Multi-
directional Occlusion Shading Model for Direct Volume Rendering.
Computer Graphics Forum 29.3 (2010), 883–891.

[190] E. SOMERSALO, M. CHENEY, and D. ISAACSON. Existence and
Uniqueness for Electrode Models for Electric Current Computed
Tomography. SIAM Journal on Applied Mathematics 52 (1992), 1012–
40.

[191] Y. SONG, E. LEE, E. J. WOO, and J. SEO. Optimal geometry toward
uniform current density electrodes. Inverse Problems 27.7 (2011).

[192] C. STAAG and M. NITSCHE. Physiological Basis of Transcranial
Direct Current Stimulation. Neuroscientist 17 (2011), 37–53.

Bibliography 225

[193] D. STALLING and H.-C. HEGE. Fast and Resolution Independent
Line Integral Convolution. SIGGRAPH95. Ed. by R. Cook. CGPACS.
New York, 1995, 249–256.

[194] K. E. STEPHAN, J. C. MARSHALL, W. D. PENNY, K. J. FRISTON,
and G. R. FINK. Interhemispheric Integration of Visual Processing
during Task-Driven Lateralization. J. Neurosci. 27.13 (2007), 3512–
3522.

[195] K. E. STEPHAN, M. TITTGEMEYER, T. R. KNÖSCHE, R. J. MORAN,
and K. J. FRISTON. Tractography-based priors for dynamic causal
models. NeuroImage 47.4 (2009), 1628–1638. ISSN: 1053-8119.

[196] K. E. STEPHAN, N. WEISKOPF, P. M. DRYSDALE, P. A. ROBINSON,
and K. J. FRISTON. Comparing hemodynamic models with DCM.
NeuroImage 38.3 (2007), 387–401. ISSN: 1053-8119.

[197] A. J. STEWART. Vicinity Shading for Enhanced Perception of Vol-
umetric Data. VIS ’03: Proceedings of the 14th IEEE Visualization 2003
(VIS’03). Washington, DC, USA: IEEE Computer Society, 2003, 47. ISBN:
0-7695-2030-8.

[198] C. STOLL, S. GUMHOLD, and H.-P. SEIDEL. Visualization with Styl-
ized Line Primitives. IEEE Visualization 2005 (VIS 2005). Ed. by C. T.
Silva, E. Gröller, and H. Rushmeier. Minneapolis, USA: IEEE, 2005, 695–
702.

[199] H. SUH, W. LEE, and T.-S. KIM. Influence of anisotropic conduc-
tivity in the skull and white matter on transcranial direct current
stimulation via an anatomically realistic finite element head model.
Physics in Medicine and Biology 57 (2012), 6961–6980.

[200] T. WEINKAUF and H. THEISEL. Curvature Measures of 3D Vector
Fields and their Applications. Journal of WSCG 10.2 (2002). Ed. by
V. Skala. WSCG 2002, Plzen, Czech Republic, February 4 - 8, 507–514.

[201] M. TARINI, P. CIGNONI, and C. MONTANI. Ambient Occlusion and
Edge Cueing for Enhancing Real Time Molecular Visualization.
IEEE Transactions on Visualization and Computer Graphics 12 (5 2006),
1237–1244. ISSN: 1077-2626.

[202] X. TRICOCHE. Vector and Tensor Field Topology Simplification,
Tracking, and Visualization. PhD thesis. Germany: University of Kaiser-
slautern, 2002.

226 Bibliography

[203] X. TRICOCHE, R. MACLEOD, and C. R. JOHNSON. Visual Analysis of
Bioelectric Fields. Ed. by L. Linsen, H. Hagen, and B. Hamann. Springer
Berlin Heidelberg, 2008, 205–220.

[204] X. TRICOCHE, G. SCHEUERMANN, and H. HAGEN. Tensor Topology
Tracking: A Visualization Method for Time-Dependent 2D Sym-
metric Tensor Fields. Eurographics 2001 Proceedings, Computer Graph-
ics Forum 20(3). The Eurographics Association. Saarbrücken, Germany,
2001, 461–470.

[205] A. TURING.The chemical basis of morphogenesis. Philosophical Trans-
actions of the Royal Society of London 237.641 (1952), 37–72.

[206] G. TURK. Generating textures on arbitrary surfaces using reaction-
diffusion. SIGGRAPH ’91: Proceedings of the 18th annual conference on
Computer graphics and interactive techniques. New York, NY, USA: ACM,
1991, 289–298. ISBN: 0-89791-436-8.

[207] K. UTZ, V. DIMOVA, K. OPPENLÄNDER, and G. KERKHOFF. Elec-
trified minds: Transcranial direct current stimulation (tDCS) and
Galvanic Vestibular Stimulation (GVS) as methods of non-invasive
brain stimulation in neuropsychology – A review of current data
and future implications. Neuropsychologia 48.10 (2010), 2789–2810.

[208] P. VISION PTY. LTD. POV-Ray Raytracer.
URL: http://www.povray.org.

[209] VTK Visualization Toolkit.
URL: http://www.vtk.org/.

[210] S. WAGNER, S. RAMPERSAD, Ü. AYDIN, J. VORWERK, T. OOS-
TENDORP, T. NEULING, C. HERRMANN, D. STEGEMAN, and C.
WOLTERS. Investigation of tDCS volume conduction effects in a
highly realistic head model. Journal of Neural Engineering 11.1 (2014),
016002.

[211] I. WALD, H. FRIEDRICH, G. MARMITT, P. SLUSALLEK, and H.-P.
SEIDEL. Faster Isosurface Ray Tracing Using Implicit KD-Trees.
IEEE Transactions on Visualization and Computer Graphics 11 (5 2005),
562–572. ISSN: 1077-2626.

http://www.povray.org
http://www.vtk.org/

Bibliography 227

[212] L. WANG, Y. ZHAO, K. MUELLER, and A. KAUFMAN. The magic
volume lens: An interactive focus+context technique for volume
rendering. In Proc. of IEEE Visualization ’05 (2005). Los Alamitos, CA,
USA: IEEE Computer Society, 2005, 367–374. ISBN: 0-7803-9462-3.

[213] R. WANG, K. ZHOU, J. SNYDER, X. LIU, H. BAO, Q. PENG, and
B. GUO. Variational sphere set approximation for solid objects. Vis.
Comput. 22 (9 2006), 612–621. ISSN: 0178-2789.

[214] L. WANGER. The effect of shadow quality on the perception of
spatial relationships in computer generated imagery. Proceedings
of the 1992 symposium on Interactive 3D graphics. I3D ’92. Cambridge,
Massachusetts, United States: ACM, 1992, 39–42. ISBN: 0-89791-467-8.

[215] L. C. WANGER, J. A. FERWERDA, and D. P. GREENBERG. Per-
ceiving Spatial Relationships in Computer-Generated Images. IEEE
Computer Graphics and Applications 12 (3 1992), 44–51, 54–58. ISSN:
0272-1716.

[216] K. WARD, F. BERTAILS, T.-Y. KIM, S. R. MARSCHNER, M.-P. CANI,
and M. C. LIN. A Survey on Hair Modeling: Styling, Simulation, and
Rendering. IEEE Transactions on Visualization and Computer Graphics 13
(2 2007), 213–234. ISSN: 1077-2626.

[217] D. WEINSTEIN, G. KINDLMANN, and E. LUNDBERG. Tensorlines:
advection-diffusion based propagation through diffusion tensor fields.
VIS ’99: Proceedings of the conference on Visualization ’99. San Francisco,
California, United States: IEEE Computer Society Press, 1999, 249–253.

[218] D. WEISKOPF and T. ERTL. A hybrid physical/device-space ap-
proach for spatio-temporally coherent interactive texture advec-
tion on curved surfaces. GI ’04: Proceedings of Graphics Interface 2004.
London, Ontario, Canada: Canadian Human-Computer Communications
Society, 2004, 263–270. ISBN: 1-56881-227-2.

[219] T. WELSH, K. MUELLER, W. ZHU, N. VOLKOW, and J. MEADE.
Graphical strategies to convey functional relationships in the hu-
man brain: a case study. VIS ’01: Proceedings of the conference on
Visualization ’01. San Diego, California: IEEE Computer Society, 2001,
481–484. ISBN: 0-7803-7200-X.

228 Bibliography

[220] K. WENDEL, O. VÄISÄNEN, J. MALMIVUO, N. G. GENCER, B. VAN-
RUMSTE, P. DURKA, R. MAGJAREVIC, S. SUPEK, M. L. PASCU, H.
FONTENELLE, and R. G. PERALTA MENENDEZ. EEG/MEG source
imaging: methods, challenges, and open issues. Computational Intel-
ligence and Neuroscience 2009 (2009), 13:1–13:12. ISSN: 1687-5265.

[221] J. J. WIJK. Image based flow visualization. SIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer graphics and interactive
techniques. San Antonio, Texas: ACM, 2002, 745–754. ISBN: 1-58113-
521-1.

[222] J. J. WIJK. Image Based Flow Visualization for Curved Surfaces.
VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03). Wash-
ington, DC, USA: IEEE Computer Society, 2003, 17. ISBN: 0-7695-2030-8.

[223] J. WILHELMS and A. VAN GELDER. Octrees for faster isosurface
generation. ACM Trans. Graph. 11.3 (1992), 201–227. ISSN: 0730-0301.

[224] M. WIRTH, R. RAHMAN, J. KUENECKE, T. KOENIG, H. HORN,
W. SOMMER, and T. DIERKS. Effects of transcranial direct current
stimulation (tDCS) on behavior and electrophysiology of language
production. Neuropsychologia 49 (2011), 3989–98.

[225] C. WOLTERS. Influence of Tissue Conductivity Infhomogeneity and
Anisotropy on EEG/MEG based Source Localization in the Human
Brain. PhD thesis. University of Leipzig, 2003. ISBN: 3-936816-11-5.

[226] C. WOLTERS, A. ANWANDER, X. TRICOCHE, D. WEINSTEIN, M.
KOCH, and R. MACLEOD. Influence of tissue conductivity anisotropy
on EEG/MEG field and return current computation in a realis-
tic head model: A simulation and visualization study using high-
resolution finite element modeling. NeuroImage 30.3 (2006), 813–826.
ISSN: 1053-8119.

[227] X. WU.An efficient antialiasing technique. SIGGRAPH Comput. Graph.
25.4 (1991), 143–152. ISSN: 0097-8930.

[228] C. WYMAN, S. PARKER, P. SHIRLEY, and C. HANSEN. Interactive
Display of Isosurfaces with Global Illumination. IEEE Transactions on
Visualization and Computer Graphics 12 (2 2006), 186–196. ISSN: 1077-
2626.

Bibliography 229

[229] C. YUKSEL and E. AKLEMAN. Rendering hair with global illumina-
tion. ACM SIGGRAPH 2006 Research posters. SIGGRAPH ’06. Boston,
Massachusetts: ACM, 2006, 124. ISBN: 1-59593-364-6.

[230] C. YUKSEL, E. AKLEMAN, and J. KEYSER. Practical Global Illumi-
nation for Hair Rendering. Proceedings of Pacific Graphics 2007. Maui,
Hawaii, 2007.

[231] C. YUKSEL and S. TARIQ. Advanced techniques in real-time hair
rendering and simulation. ACM SIGGRAPH 2010 Courses. SIGGRAPH
’10. Los Angeles, California: ACM, 2010, 1–168.

[232] E. ZHANG, J. HAYS, and G. TURK. Interactive Tensor Field Design
and Visualization on Surfaces. IEEE Transactions on Visualization and
Computer Graphics 13.1 (2007), 94–107. ISSN: 1077-2626.

[233] E. ZHANG, H. YEH, Z. LIN, and R. S. LARAMEE. Asymmetric Tensor
Analysis for Flow Visualization. IEEE Transactions on Visualization and
Computer Graphics 15 (2009), 106–122. ISSN: 1077-2626.

[234] S. ZHANG, C. DEMIRALP, and D. H. LAIDLAW. Visualizing Diffusion
Tensor MR Images Using Streamtubes and Streamsurfaces. IEEE
Transactions on Visualization and Computer Graphics 9.4 (2003), 454–
462. ISSN: 1077-2626.

[235] X. ZHENG and A. PANG. HyperLIC. VIS ’03: Proceedings of the 14th
IEEE Visualization 2003 (VIS’03). Washington, DC, USA: IEEE Computer
Society, 2003, 33. ISBN: 0-7695-2030-8.

[236] J. ZHOU and M. TAKATSUKA. Automatic Transfer Function Genera-
tion Using Contour Tree Controlled Residue Flow Model and Color
Harmonics. IEEE Transactions on Visualization and Computer Graphics
15.6 (2009), 1481–1488. ISSN: 1077-2626.

[237] S. ZHUKOV, A. INOES, and G. KRONIN. An Ambient Light Illumina-
tion Model. Rendering Techniques ’98. Ed. by G. Drettakis and N. Max.
Eurographics. Springer-Verlag Wien New York, 1998, 45–56.

[238] M. ZÖCKLER, D. STALLING, and H.-C. HEGE. Interactive visualiza-
tion of 3D-vector fields using illuminated stream lines. Proceedings
of the 7th conference on Visualization ’96. VIS ’96. San Francisco, Cali-
fornia, United States: IEEE Computer Society Press, 1996, 107–ff. ISBN:
0-89791-864-9.

230 Bibliography

[239] M. ZWAN, W. LUEKS, H. BEKKER, and T. ISENBERG. Illustra-
tive Molecular Visualization with Continuous Abstraction. Computer
Graphics Forum 30.3 (2011), 683–690. ISSN: 1467-8659.

	Overview
	Thesis Contributions
	I Visualization in the Neurosciences
	OpenWalnut
	Overview
	Focus and Reasoning
	Realization
	Results
	Future Work and Conclusion

	Effective Connectivity
	Overview
	Background
	Method
	Results
	Future Work and Conclusion

	Electric Fields from EEG and tDCS
	Overview and Background
	Visualization Algorithms
	Application Cases
	Results and Discussion
	Future Work and Conclusion

	II Computer Graphics in Visualization
	Background
	The Modern Graphics Processor
	Screen Space Rendering
	Summary and Outlook

	Improved TensorMesh
	Overview
	Background
	Method
	Results
	Discussion
	Conclusion

	LineAO
	Overview
	Background
	Method
	Results
	Discussion
	Conclusion

	PointAO
	Overview
	Background
	Method
	Results
	Discussion
	Conclusion

	Thesis Conclusions
	List of Publications
	List of Talks
	List of Figures
	List of Tables
	Bibliography

